Springer Nature is making SARS-CoV-2 and COVID-19 research free. View research | View latest news | Sign up for updates

Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan

  • 91 Accesses

Abstract

Herein, we describe the electrophilic substitution reaction of indole with aldehydes and ketone using sulphonic acid functional group containing chitosan for the synthesis of bis(indolyl)methanes. The reaction is chemoselective affording a product from aldehydes and indole. The catalyst can be reused up to three times without great loss in yields. Hence, chitosan–SO3H (CTSA) proved to be a heterogeneous, efficient, chemoselective, and reusable catalyst for the synthesis of bis(indolyl)methane derivatives.

Graphic abstract

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Scheme 1
Fig. 3
Scheme 2
Fig. 4

References

  1. Abe T, Nakamura S, Yanada R, Choshi T, Hibino S, Ishikura M (2013) One-pot construction of 3, 3′-bisindolylmethanes through Bartoli indole synthesis. Org Lett 15:3622–3625

  2. Azizi N, Torkian L, Saidi MR (2007) Highly efficient synthesis of bis(indolyl)methanes in water. J Mol Catal A Chem 275:109–112

  3. Bailey DC, Langer SH (1981) Immobilized transition-metal carbonyls and related catalysts. Chem Rev 81:109–148

  4. Bao B, Sun Q, Yao X, Hong J, Lee C-O, Sim CJ, Im KS, Jung JH (2005) Cytotoxic bisindole alkaloids from a marine sponge Spongosorites sp. J Nat Prod 68:711–715

  5. Boroujeni KP, Parvanak K (2011) Efficient and solvent-free synthesis of bis-indolylmethanes using silica gel supported aluminium chloride as a reusable catalyst. Chin Chem Lett 22:939–942

  6. Calò V, Nacci A, Monopoli A, Fornaro A, Sabbatini L, Cioffi N, Ditaranto N (2004) Heck reaction catalyzed by nanosized palladium on chitosan in ionic liquids. Organometallics 23:5154–5158

  7. Casapullo A, Bifulco G, Bruno I, Riccio R (2000) New bisindole alkaloids of the topsentin and hamacanthin classes from the Mediterranean marine sponge Rhaphisia lacazei. J Nat Prod 63:447–451

  8. Chakrabarty M, Mukherji A, Karmakar S, Arima S, Harigaya Y (2006) A new catalytic application of a keggin acid in the synthesis of symmetrical bis (indolyl) alkanes. Heterocycles 68(2):331–338

  9. Chen D, Yu L, Wang PG (1996) Lewis acid-catalyzed reactions in protic media. Lanthanide-catalyzed reactions of indoles with aldehydes or ketones. Tetrahedron Lett 37:4467–4470

  10. Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] huisgen cycloaddition. Angew Chem 121:6030–6034

  11. Contractor R, Samudio IJ, Estrov Z, Harris D, McCubrey JA, Safe SH, Andreeff M, Konopleva M (2005) A novel ring-substituted diindolylmethane, 1, 1-bis [3′-(5-methoxyindolyl)]-1-(pt-butylphenyl) methane, inhibits extracellular signal-regulated kinase activation and induces apoptosis in acute myelogenous leukemia. Can Res 65:2890–2898

  12. Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36:981–1014

  13. Firouzabadi H, Iranpoor N, Jafari AA (2006) Aluminumdodecatungstophosphate (AlPW12O40), a versatile and a highly water tolerant green Lewis acid catalyzes efficient preparation of indole derivatives. J Mol Catal A Chem 244:168–172

  14. Garbe TR, Kobayashi M, Shimizu N, Takesue N, Ozawa M, Yukawa H (2000) Indolyl carboxylic acids by condensation of indoles with α-keto acids. J Nat Prod 63:596–598

  15. Hikawa H, Yokoyama Y (2013) Pd-catalyzed C–H activation in water: synthesis of bis(indolyl) methanes from indoles and benzyl alcohols. RSC Adv 3:1061–1064

  16. Ichite N, Chougule MB, Jackson T, Fulzele SV, Safe S, Singh M (2009) Enhancement of docetaxel anticancer activity by a novel diindolylmethane compound in human non-small cell lung cancer. Clin Cancer Res 15:543–552

  17. Jamsheena V, Shilpa G, Saranya J, Harry NA, Lankalapalli RS, Priya S (2016) Anticancer activity of synthetic bis(indolyl)methane-ortho-biaryls against human cervical cancer (HeLa) cells. Chem Biol Interact 247:11–21

  18. Ji S-J, Wang S-Y, Zhang Y, Loh T-P (2004) Facile synthesis of bis(indolyl)methanes using catalytic amount of iodine at room temperature under solvent-free conditions. Tetrahedron 60:2051–2055

  19. Kalla RMN, John JV, Park H, Kim I (2014) Tetramethyl guanidinium chlorosulfonate as a highly efficient and recyclable organocatalyst for the preparation of bis(indolyl)methane derivatives. Catal Commun 57:55–59

  20. Kamble VT, Kadam KR, Joshi NS, Muley DB (2007) HClO4–SiO2 as a novel and recyclable catalyst for the synthesis of bis-indolylmethanes and bis-indolylglycoconjugates. Catal Commun 8:498–502

  21. Karthik M, Tripathi A, Gupta N, Palanichamy M, Murugesan V (2004) Zeolite catalyzed electrophilic substitution reaction of indoles with aldehydes: synthesis of bis(indolyl)methanes. Catal Commun 5:371–375

  22. Karthik M, Magesh C, Perumal P, Palanichamy M, Arabindoo B, Murugesan V (2005) Zeolite-catalyzed ecofriendly synthesis of vibrindole A and bis(indolyl)methanes. Appl Catal A 286:137–141

  23. Kaur G, Vadekeetil A, Harjai K, Singh V (2015) Synthesis of α-acylamino-amide-bis(indolyl)methane heterocycles by sequential one pot condensation-Ugi/Passerini reactions and their antimicrobial evaluation. Tetrahedron Lett 56:4445–4450

  24. Ke B, Qin Y, Wang Y, Wang F (2005) Amberlyst-catalyzed reaction of indole: synthesis of bisindolylalkane. Synth Commun 35:1209–1212

  25. Khalil K, Al-Matar H, Elnagdi M (2010) Chitosan as an eco-friendly heterogeneous catalyst for Michael type addition reactions. A simple and efficient route to pyridones and phthalazines. Eur J Chem 1:252–258

  26. Khan K, Siddiqui ZN (2015) An efficient synthesis of tri-and tetrasubstituted imidazoles from benzils using functionalized chitosan as biodegradable solid acid catalyst. Ind Eng Chem Res 54:6611–6618

  27. Kühbeck D, Saidulu G, Reddy KR, Díaz DD (2012) Critical assessment of the efficiency of chitosan biohydrogel beads as recyclable and heterogeneous organocatalyst for C–C bond formation. Green Chem 14:378–392

  28. Lafzi F, Kilic H, Ertugrul B, Arik M, Saracoglu N (2018) Bis (indolyl) methane substituted tetraphenylethylene derivatives as AIE active materials. J Luminesc 208:174–182

  29. Liao Y, Li Q, Wang N, Shao S (2015) Development of a new electrochemical sensor for determination of Hg(II) based on bis(indolyl)methane/mesoporous carbon nanofiber/nafion/glassy carbon electrode. Sens Actuators B Chem 215:592–597

  30. Magesh CJ, Nagarajan R, Karthik M, Perumal PT (2004) Synthesis and characterization of bis(indolyl)methanes, tris (indolyl) methanes and new diindolylcarbazolylmethanes mediated by Zeokarb-225, a novel, recyclable, eco-benign heterogenous catalyst. Appl Catal A 266:1–10

  31. Martina K, Leonhardt SE, Ondruschka B, Curini M, Binello A, Cravotto G (2011) In situ cross-linked chitosan Cu(I) or Pd(II) complexes as a versatile, eco-friendly recyclable solid catalyst. J Mol Catal A Chem 334:60–64

  32. Martınez R, Espinosa A, Tárraga A, Molina P (2008) Bis(indolyl)methane derivatives as highly selective colourimetric and ratiometric fluorescent molecular chemosensors for Cu2+ cations. Tetrahedron 64:2184–2191

  33. Mohammadi R, Kassaee MZ (2013) Sulfochitosan encapsulated nano-Fe3O4 as an efficient and reusable magnetic catalyst for green synthesis of 2-amino-4H-chromen-4-yl phosphonates. J Mol Catal A Chem 380:152–158

  34. Nadkarni SV, Gawande MB, Jayaram RV, Nagarkar JM (2008) Synthesis of bis(indolyl)methanes catalyzed by surface modified zirconia. Catal Commun 9:1728–1733

  35. Nagarajan R, Perumal PT (2002) InCl3 and In(OTf)3 catalyzed reactions: synthesis of 3-acetyl indoles, bis-indolylmethane and indolylquinoline derivatives. Tetrahedron 58:1229–1232

  36. Oh K-B, Mar W, Kim S, Kim J-Y, Lee T-H, Kim J-G, Shin D, Sim CJ, Shin J (2006) Antimicrobial activity and cytotoxicity of bis (indole) alkaloids from the sponge Spongosorites sp. Biol Pharm Bull 29:570–573

  37. Pore D, Desai UV, Thopate T, Wadgaonkar P (2006) A mild, expedient, solventless synthesis of bis (indolyl) alkanes using silica sulfuric acid as a reusable catalyst. Arkivoc 12:75–80

  38. Ramesh C, Banerjee J, Pal R, Das B (2003) Silica supported sodium hydrogen sulfate and amberlyst-15: two efficient heterogeneous catalysts for facile synthesis of bis-and tris (1H-indol-3-yl) methanes from indoles and carbonyl compounds [1]. Adv Synth Catal 345:557–559

  39. Reddy BS, Venkateswarlu A, Reddy GN, Reddy YR (2013) Chitosan–SO3H: an efficient, biodegradable, and recyclable solid acid for the synthesis of quinoline derivatives via Friedländer annulation. Tetrahedron Lett 54:5767–5770

  40. Sarva S, Harinath JS, Sthanikam SP, Ethiraj S, Vaithiyalingam M, Cirandur SR (2016) Synthesis, antibacterial and anti-inflammatory activity of bis(indolyl)methanes. Chin Chem Lett 27:16–20

  41. Shchepinov M, Korshun V (2003) Recent applications of bifunctional trityl groups. Chem Soc Rev 32:170–180

  42. Shimoda M, Shibamoto T (1990) Isolation and identification of headspace volatiles from brewed coffee with an on-column GC/MS method. J Agric Food Chem 38:802–804

  43. Simha PR, Mangali MS, Kuppireddy Gari D, Venkatapuram P, Adivireddy P (2017) Benzenesulfonic acid: a versatile catalyst for the synthesis of bis(indolyl)methanes as antioxidants. J Heterocycl Chem 54:2717–2724

  44. Srinivasa A, Nandeshwarappa BP, Kiran BM, Mahadevan KM (2008) Antimony trichloride catalyzed condensation of indole and carbonyl compounds: synthesis of bis(indolyl)methanes. Phosphorus Sulfur Silicon Relat Elem 182:2243–2249

  45. Sun J, Wang J, Cheng W, Zhang J, Li X, Zhang S, She Y (2012) Chitosan functionalized ionic liquid as a recyclable biopolymer-supported catalyst for cycloaddition of CO2. Green Chem 14:654–660

  46. Swetha A, Babu BM, Meshram H (2015) An efficient and rapid protocol for the synthesis of diversely functionalized bisindolylmethanes. Tetrahedron Lett 56:1775–1779

  47. Tanaka J, Da Silva C, De Oliveira A, Nakamura C, Dias Filho B (2006) Antibacterial activity of indole alkaloids from Aspidosperma ramiflorum. Braz J Med Biol Res 39:387–391

  48. Veisi H, Sedrpoushan A, Zolfigol MA, Mohanazadeh F (2011) Synthesis and application of silica phenyl sulfonic acid as a solid acid heterogeneous catalyst for one-pot synthesis of 2-aryl-1-arylmethyl-1H-1,3-benzimidazoles and bis(indolyl)methanes in water. J Heterocycl Chem 48:1448–1454

  49. Veluri R, Oka I, Wagner-Döbler I, Laatsch H (2003) New indole alkaloids from the North Sea bacterium Vibrio parahaemolyticus Bio249. J Nat Prod 66:1520–1523

  50. Wright CW, Phillipson JD (1990) Natural products and the development of selective antiprotozoal drugs. Phytother Res 4:127–139

  51. Wright C, Allen D, Cai Y, Phillipson J, Said I, Kirby G, Warhurst D (1992) In vitro antiamoebic and antiplasmodial activities of alkaloids isolated from Alstonia angustifolia roots. Phytother Res 6:121–124

  52. Xie A, Zhang K, Wu F, Wang N, Wang Y, Wang M (2016) Polydopamine nanofilms as visible light-harvesting interfaces for palladium nanocrystal catalyzed coupling reactions. Catal Sci Technol 6:1764–1771

  53. Yadav JS, Reddy BVS, Murthy CV, Kumar GM, Madan C (2001) Lithium perchlorate catalyzed reactions of indoles: an expeditious synthesis of bis(indolyl)methanes. Synthesis 2001:0783–0787

  54. Yadav J, Reddy BS, Premalatha K, Shankar KS (2008) Bismuth(III)-catalyzed rapid and highly efficient synthesis of 2-aryl-1-arylmethyl-1H-benzimidazoles in water. Can J Chem 86:124–128

  55. Ying A, Li Z, Ni Y, Xu S, Hou H, Hu H (2015) Novel multiple-acidic ionic liquids: green and efficient catalysts for the synthesis of bis-indolylmethanes under solvent-free conditions. J Ind Eng Chem 24:127–131

  56. Zeng M, Zhang X, Shao L, Qi C, Zhang X-M (2012) Highly porous chitosan microspheres supported palladium catalyst for coupling reactions in organic and aqueous solutions. J Organomet Chem 704:29–37

Download references

Acknowledgements

We are grateful to Dr. S.J.S. Flora Director, NIPER-Raebareli for their support and motivation. The authors Amit Kumar, Chetananda Patel, Pooja Patil and Shivam Vyas are thankful to Department of Pharmaceuticals, Ministry of Chemicals and Fertilizers, Government of India, for granting fellowship. SAIF-CSIR-CDRI, Lucknow, is greatly acknowledged for providing spectral data. NIPER-R/Communications/035.

Author information

Correspondence to Abha Sharma.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kumar, A., Patel, C., Patil, P. et al. Chemoselective synthesis of bis(indolyl)methanes using sulfonic acid-functionalized chitosan. Chem. Pap. 73, 3095–3104 (2019). https://doi.org/10.1007/s11696-019-00846-2

Download citation

Keywords

  • Bis(indolyl)methanes
  • Chemoselective
  • CTSA
  • Recyclable