Abstract
The present work describes eleven different syntheses of oleate-coated iron-oxide nanoparticles via thermolysis of Fe(III) oleate in high-boiling point organic solvents using a heating mantle with manual heating rate control. It has been shown that heating of iron oleate for 10 min in octadecane at 318 °C (average heating rate is about 7.7 °C/min) does not lead to the formation of iron-oxide nanoparticles, whereas decrease of the heating rate and further more continuous reflux (20, 30, 60 min) trigger their formation. The experimental results show that the use of heating mantle without automatic heating controller makes it harder to precisely control the size of the nanoparticles and indicate that certain variations of the heating rates may result in iron-oxide nanoparticles of slightly different sizes. It has been also exemplified that prehistory of the iron oleate namely its storage time may affect the morphology of the resulting iron-oxide nanoparticles.
This is a preview of subscription content, access via your institution.


References
Baaziz W, Pichon BP, Fleutot S, Liu Y, Lefevre C, Greneche J-M, Toumi M, Mhiri T, Begin-Colin S (2014) Magnetic iron oxide nanoparticles: reproducible tuning of the size and nanosized-dependent composition, defects, and spin canting. J Phys Chem C 118:3795–3810. https://doi.org/10.1021/jp411481p
Babic-Stojic B, Jokanovic V, Milivojevic D, Pozek M, Jaglicic Z, Makovec D, Orsini NJ, Markovic M, Arsikin K, Paunovic V (2018) Ultrasmall iron oxide nanoparticles: magnetic and NMR relaxometric properties. Curr Appl Phys 18:141–149. https://doi.org/10.1016/j.cap.2017.11.017
Bronstein LM, Huang X, Retrum J, Schmucker A, Pink M, Stein B, Dragnea B (2007) Influence of iron oleate complex structure on iron oxide nanoparticle formation. Chem Mater 19:3624–3632. https://doi.org/10.1021/cm062948j
Casula MF, Jun YW, Zaziski DJ, Chan EM, Corrias A, Alivisatos AP (2006) The concept of delayed nucleation in nanocrystal growth demonstrated for the case of iron oxide nanodisks. J Am Chem Soc 128(5):1675–1682. https://doi.org/10.1021/ja056139x
Darwish MSA, Stibor I (2016) Pentenoic acid-stabilized magnetic nanoparticles for nanomedicine applications. J Dispersion Sci Technol 37:1793–1798. https://doi.org/10.1080/01932691.2016.1140584
Darwish MSA, El-Sabbagh A, Stibor I (2015) Hyperthermia properties of magnetic polyethylenimine core/shell nanoparticles: influence of carrier and magnetic field strength. J Polym Res 22:239–245. https://doi.org/10.1007/s10965-015-0882-4
Delgado-Rosales EE, Quintanar-Guerrero D, Pinon-Segundo E, Magana-Vergara NE, Leyva-Mertinez G, Mendoza-Munoz N (2018) Novel drug delivery systems based on the encapsulation of superparamagnetic nanoparticles into lipid nanocomposites. J Drug Deliv Sci Technol 46:259–267. https://doi.org/10.1016/j.jddst.2018.05.032
Fedorenko S, Stepanov A, Zairov R, Kaman O, Amirov R, Nizameev I, Kholin K, Ismaev I, Voloshina A, Sapunova A, Kadirov M, Mustafina A (2018) One-pot embedding of iron oxides and Gd(III) complexes into silica nanoparticles—morphology and aggregation effects on MRI dual contrasting ability. Colloids Surf A 559:60–67. https://doi.org/10.1016/j.colsurfa.2018.09.044
Herranz F, Morales MP, Roca AG, Desco M, Ruiz-Cabello J (2008) A new method for the rapid synthesis of water stable superparamagnetic nanoparticles. Chem Eur J 14:9126–9130. https://doi.org/10.1002/chem.200800755
Hilger I, Kaiser WA (2012) Iron oxide-based nanostructures for MRI and magnetic hyperthermia. Nanomedicine 7:1443–1459. https://doi.org/10.2217/nnm.12.112
Hufschmid R, Arami H, Ferguson RM, Gonzales M, Teeman E, Brush LN, Browning ND, Krishnan KM (2015) Synthesis of phase-pure and monodisperse iron oxide nanoparticles by thermal decomposition. Nanoscale 7:11142–11154. https://doi.org/10.1039/C5NR01651G
Jedlovszky-Hajdu A, Tombacz E, Banyai I, Babos M, Palko A (2012) Carboxylated magnetic nanoparticles as MRI contrast agents: relaxation measurements at different field strengths. J Magn Magn Mater 324:3173–3180. https://doi.org/10.1016/j.jmmm.2012.05.031
Kurczewska J, Ceglowski M, Schroeder G (2018) Preparation of multifunctional cascade iron oxide nanoparticles for drug delivery. Mater Chem Phys 211:34–41. https://doi.org/10.1016/j.matchemphys.2018.01.064
Mendes RG, Koch B, Bachmatiuk A, El-Gendy AA, Krupskaya Y, Springer A, Klingeler R, Schmidt O, Büchner B, Sanchez S, Rümmeli MH (2014) Synthesis and toxicity characterization of carbon coated iron oxide nanoparticles with highly defined size distributions. Biochem Biophys Acta 1840:160–169. https://doi.org/10.1016/j.bbagen.2013.08.025
Mohanta SC, Saha A, Devi PS (2018) PEGylated iron oxide nanoparticles for pH responsive drug delivery application. Mater Today 5:9715–9725. https://doi.org/10.1016/j.matpr.2017.10.158
Nguyen D, Kim K-S (2016) Controlled synthesis of monodisperse magnetite nanoparticles for hyperthermia-based treatments. Powder Technol 301:1112–1118. https://doi.org/10.1016/j.powtec.2016.07.052
Oka C, Ushimaru K, Horiishi N, Tsuge T, Kitamoto Y (2015) Core–shell composite particles composed of biodegradable polymer particles and magnetic iron oxide nanoparticles for targeted drug delivery. J Magn Magn Mater 381:278–284. https://doi.org/10.1016/j.jmmm.2015.01.005
Panchal V, Bhandarkar U, Neergat M, Suresh KG (2015) Synthesis of iron oxide nanoparticles from iron acetylacetonate and cyclopentadienyliron dicarbonyl dimer in low pressure plasma—effect of plasma parameters on morphology and magnetic properties. Int J Nanomedicine 14:1550004–1550016. https://doi.org/10.1142/S0219581X15500040
Park J, An K, Hwang Y, Park J-G, Noh H-J, Kim J-Y, Park J-H, Hwang N-M, Hyeon T (2004) Ultra-large-scale synthesis of monodisperse nanocrystals. Nat Mater 3:891–895. https://doi.org/10.1038/nmat1251
Pineiro Y, Vargas Z, Rivas J, Lopez-Quintela M (2015) Iron oxide based nanoparticles for magnetic hyperthermia strategies in biological applications. Eur J Inorg Chem 27:4495–4509. https://doi.org/10.1002/ejic.201500598
Redl FX, Black CT, Papaefthymiou GC, Sandstrom RL, Yin M, Zeng H, Murray CB, O’Brien SP (2004) Magnetic, electronic, and structural characterization of nonstoichiometric iron oxides at the nanoscale. J Am Chem Soc 126:14583–14599. https://doi.org/10.1021/ja046808r
Saxena N, Singh M (2017) Efficient synthesis of superparamagnetic magnetite nanoparticles under air for biomedical applications. J Magn Magn Mater 429:166–176. https://doi.org/10.1016/j.jmmm.2017.01.031
Stepanov A, Burilov V, Pinus M, Mustafina A, Rümmeli MH, Mendes RG, Amirov R, Lukashenko S, Zvereva E, Katsuba S, Elistratova J, Nizameev I, Kadirov M, Zairov R (2014) Water transverse relaxation rates in aqueous dispersions of superparamagnetic iron oxide nanoclusters with diverse hydrophilic coating. Colloids Surf A 443:450–458. https://doi.org/10.1016/j.colsurfa.2013.12.009
Stepanov A, Mustafina A, Mendes RG, Rümmeli MH, Gemming T, Popova E, Nizameev I, Kadirov M (2016a) Impact of heating mode in synthesis of monodisperse iron-oxide nanoparticles via oleate decomposition. J Iran Chem Soc 13:299–305. https://doi.org/10.1007/s13738-015-0737-2
Stepanov A, Mustafina A, Solovieva S, Kleshnina S, Antipin I, Rizvanov I, Nizameev I, Mendes RG, Rümmeli MH, Giebeler L, Amirov R, Konovalov A (2016b) Amphiphiles with polyethyleneoxide–polyethylenecarbonate chains for hydrophilic coating of iron oxide cores, loading by Gd(III) ions and tuning R2/R1 ratio. React Funct Polym 99:107–113. https://doi.org/10.1016/j.reactfunctpolym.2015.12.015
Ta HT, Li Z, Hagemeyer CE, Cowin G, Zhang S, Palasubramaniam J, Alt K, Wang X, Peter K, Whittaker AK (2017) Molecular imaging of activated platelets via antibody-targeted ultra-small iron oxide nanoparticles displaying unique dual MRI contrast. Biomaterials 134:31–42. https://doi.org/10.1016/j.biomaterials.2017.04.037
Tzitzios VK, Bakandritsos A, Georgakilas V, Basina G, Boukos N, Bourlinos AB, Niarchos D, Petridis D (2007) Large-scale synthesis, size control, and anisotropic growth of & gamma-Fe2O3 nanoparticles: organosols and hydrosols. J Nanosci Nanotechnol 7:2753–2757. https://doi.org/10.1166/jnn.2007.605
Wetterskog E, Agthe M, Mayence A, Grins J, Wang D, Rana S, Ahniyaz A, Salazar-Alvarez G, Bergström L (2014) Precise control over shape and size of iron oxide nanocrystals suitable for assembly into ordered particle arrays. Sci Technol Adv Mater 15:055010–055019. https://doi.org/10.1088/1468-6996/15/5/055010
Wu W, Xiao XH, Zhang SF, Peng TC, Zhou J, Ren F, Jiang CZ (2010) Synthesis and magnetic properties of maghemite (γ-Fe2O3) short-nanotubes. Nanoscale Res Lett 5:1474–1479. https://doi.org/10.1007/s11671-010-9664-4
Acknowledgements
M.H.R. thanks ERDF “Institute of Environmental Technology—Excellent Research ” (No. CZ.02.1.01/0.0/0.0/15_019/0000853).
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of interest
On behalf of all authors, the corresponding author states that there is no conflict of interest.
Additional information
Publisher's Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Stepanov, A., Mendes, R., Rümmeli, M. et al. Synthesis of spherical iron-oxide nanoparticles of various sizes under different synthetic conditions. Chem. Pap. 73, 2715–2722 (2019). https://doi.org/10.1007/s11696-019-00823-9
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11696-019-00823-9
Keywords
- Iron-oxide nanoparticles
- Thermal decomposition
- Monodispersity
- Iron oleate complex