Skip to main content

Advertisement

Log in

Biomass gasification: conversion of forest residues into heat, electricity and base chemicals

  • Review
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Gasification of biomass can play a major role in the future’s energy system as a source of renewable electricity, process heat, fuels, and chemicals. The composition of wood poses some constraints for the operation: below a certain limit of gasification agent, parts of the carbon stay solid and must be considered as an efficiency loss. Thermodynamic calculations allow the determination of this solid carbon boundary and give hints for the process optimization. Several examples for gasifiers, gas cleaning approaches—primarily focusing on tar as the main operating difficulty and dust—and producer gas applications are given and evaluated, including some aspects of scale. Finally, the great potential for the production of transportation fuels and base chemicals from renewable resources is discussed. Possible products are methane, methanol, dimethyl ether, gasoline, Fischer–Tropsch liquids and mixed alcohols. If installations for the gasification of woody biomass with chemicals production are combined with water electrolysis from renewable electricity, the carbon conversion efficiency of the process will be raised to 100% or the combined PBtX-installation (Power and Biomass to X) will offer significant balancing power to the electricity transmission network.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

AFT:

Adiabatic flame temperature (°C)

AIT:

Air inlet temperature (°C)

ER:

Equivalence ratio (kg kg−1)

H i :

Lower heating value (gas) (MJ m−3)

h i :

Lower heating value (solid) (MJ kg−1)

ΔR H :

Standard enthalpy of reaction (kJ mol−1)

WC:

Water content (wt %)

References

  • Ahlström J (2018) Cost-effective pathways for gasification-based production of biofuels. Master thesis, Chalmers University of Technology, Department of Earth, Space and Environment, Gothenburg, Sweden

  • Ahmad J, Cordioli E, Patuzzi F, Prando D, Castaldi MJ, Baratieri M (2016) Possible utilization pathways of char from biomass thermochemical conversion: char as catalytic filtering medium for tar cracking. In: Faaij APC, Baxter D, Grassi A, Helm P (eds) Proceedings of 24th European biomass conference and exhibition, Amsterdam, The Netherlands, June 6th-9th, pp 475-479. https://doi.org/10.5071/24theubce2016-2bo.2.3

  • Ahmed R, Sinnathambi CM, Eldmerdash U, Subbarao D (2014) Thermodynamics analysis of refinery sludge gasification in adiabatic updraft gasifier. Sci World J 758137:1-8. https://doi.org/10.1155/2014/758137

    Article  CAS  Google Scholar 

  • Albrecht FG, Dietrich RU, König DH (2016) Power and biomass-to-liquid (PBtL): higher carbon conversion efficiency and lower production costs for second generation biofuels. In: Abraham R, Behrendt F, Bräkow D, Doloszeski H, Elsen R, Haenel MW, Klose W, Krzack S, Mühlen HJ, Specht M (eds) DGMK Tagungsbericht (congress proceedings) 2016-2, Fachbereichstagung Konversion von Biomassen und Kohlen (congress of department conversion of biomasses and coals), Rotenburg a.d. Fulda, Germany, May 9th–11th, pp 23–30

  • Andersson K, Johnsson F (2006) Process evaluation of an 865 MWe lignite fired O2/CO2 power plant. Energy Convers Manag 47(18–19):3487–3498. https://doi.org/10.1016/j.enconman.2005.10.017

    Article  CAS  Google Scholar 

  • Andersson KJ, Skov-Skjøth Rasmussen M, Højlund Nielsen PE (2017) Industrial-scale gas conditioning including Topsoe tar reforming and purification downstream biomass gasifiers: an overview and recent examples. Fuel 203:1026–1030. https://doi.org/10.1016/j.fuel.2017.02.085

    Article  CAS  Google Scholar 

  • Bengtsson S (2011) VVBGC demonstration plant activities at Värnamo. Biomass Bioenergy 35:S16–S20. https://doi.org/10.1016/j.biombioe.2011.03.034

    Article  Google Scholar 

  • Berger B, Bacq A, Jeanmart H, Bourgois F (2011) Experimental investigation on the gasification of creosoted wood using a two-stage gasifier. In: Faulstich M, Ossenbrink H, Dallemand JF, Baxter D, Grassi A, Helm P (eds) 19th European biomass conference and exhibition, Berlin, Germany, June 6th–10th, pp 899–906. https://doi.org/10.5071/19theubce2011-oa5.1

  • Bock S, Hamel C, Kaluza S, Schulzke T, Unger C (2015) Catalytic tar reforming in biomass-derived synthesis gas—overview of catalytic test results and economic aspects. In: Obernberger I, Baxter D, Grassi A, Helm P (eds) Proceedings of the 23rd European biomass conference and exhibition, Vienna, Austria, June 1st–4th, ETA-Florence Renewable Energies, pp 568–576. https://doi.org/10.5071/23rdeubce2015-2co.6.2

  • Brandin J, Liliedahl T (2011) Unit operations for production of clean hydrogen-rich synthesis gas from gasified biomass. Biomass Bioenergy 35:S8–S15. https://doi.org/10.1016/j.biombioe.2011.05.025

    Article  CAS  Google Scholar 

  • Briesemeister L, Kremling M, Fendt S, Spliethoff H (2017) Air-blown entrained-flow gasification of biocoal from hydrothermal carbonization. Chem Eng Technol 40:270–277. https://doi.org/10.1002/ceat.201600192

    Article  CAS  Google Scholar 

  • Brown A (2018) Moving to the next level—how can we accelerate sustainable bioenergy deployment? In: Persson M, Scarlat N, Grassi A, Helm P (eds) Proceedings of 26th European biomass conference and exhibition, Copenhagen, Denmark, May 14th–17th. Keynote lecture during closing ceremony. http://www.etaflorence.it/proceedings/index.asp?conference=2018. Assessed 8 Jul 2018

  • Carlowitz O, Claussen M, Maly M, Schindler M, Vodegel S (2003) Biogene Fischer-Tropsch-Kraftstoffe fuer zukuenftige Antriebskonzepte (Renewable Fischer-Tropsch-fuels for future powertrain concepts). In: VDI (ed) Kraftstoffe und Antriebe der Zukunft—Synergien fuer eine nachhaltige Zukunft? (Fuels and powertrains for the future—synergies for a sustainable future?). Tagungsband (conference proceedings) 20. Internationale VW-VDI Gemeinschaftstagung (20th joint VW-VDI conference), Wolfsburg, Germany, December 3rd-5th, VDI-Berichte Nr. 1808, VDI-Verlag GmbH, ISSN 0083-5560, pp 439–449

  • Chaiwatanodom P, Vivanpatarakij S, Assabumrungrat S (2014) Thermodynamic analysis of biomass gasification with CO2 recycle for synthesis gas production. Appl Energy 114:10–17. https://doi.org/10.1016/j.apenergy.2013.09.052

    Article  CAS  Google Scholar 

  • Chen CJ, Hung CI, Chen WH (2012) Numerical investigation on performance of coal gasification under various injection patterns in an entrained flow gasifier. Appl Energy 100:218–228. https://doi.org/10.1016/j.apenergy.2012.05.013

    Article  CAS  Google Scholar 

  • Claus D (2012) Integrating operations and research to demonstrate bioenergy heating at the university of Northern British Columbia. J Green Build 7(1):3–16. https://doi.org/10.3992/jgb.7.1.3

    Article  Google Scholar 

  • Corella J, Toledo JM, Padilla R (2004a) Catalytic hot gas cleaning with monoliths in biomass gasification in fluid beds. 1. Their effectiveness for tar elimination. In: van Swaaij WPM, Fjällström T, Helm P, Grassi A (eds) Proceedings of the 2nd World Biomass Conference, Rome, Italy, May 10th–14th, pp 750–753

  • Corella J, Toledo JM, Padilla R (2004b) Olivine or dolomite as in-bed-additives in biomass gasification with air in fluidized beds. Which is better? In: van Swaaij WPM, Fjällström T, Helm P, Grassi A (eds) Proceedings of the 2nd world biomass conference, Rome, Italy, May 10th–14th, pp 1077–1081

  • Dahmen N, Dinjus E, Kolb T, Arnold U, Leibold H, Stahl R (2012) State of the art of the bioliq® process for synthetic biofuels production. Environ Prog Sustain Energy 31(2):176–181. https://doi.org/10.1002/ep.10624

    Article  CAS  Google Scholar 

  • Dahmen N, Abeln J, Eberhard M, Kolb T, Leibold H, Sauer J, Stapf D, Zimmerlin B (2017) The bioliq process for producing synthetic transportation fuels. WIREs Energy Environ 6(3):e236. https://doi.org/10.1002/wene.236

    Article  CAS  Google Scholar 

  • Desrosiers R (1981) Thermodynamics of Gas-Char Reactions. In: Reed TB (ed) Biomass gasification—principles and technology. Noyes Data Corporation, Park Ridge, pp 119–153

    Google Scholar 

  • Dry ME (2002) The Fischer–Tropsch process: 1950–2000. Catal Today 71(3–4):227–241. https://doi.org/10.1016/S0920-5861(01)00453-9

    Article  CAS  Google Scholar 

  • Dufour A, Masson E, Girods P, Rogaume Y, Zoulalian A (2011) Evolution of aromatic tar composition in relation to methane and ethylene from biomass pyrolysis-gasification. Energy Fuels 25(9):4182–4189. https://doi.org/10.1021/ef200846g

    Article  CAS  Google Scholar 

  • Dumfort S, Huemer M, Hofmann A, Huber MB, Krueger J (2015) Tar decomposition at low temperatures within staged gasification reactors—first approach towards mechanisms and background. GSTF J Eng Tech 3(3):45–49. https://doi.org/10.5176/2251-3701_3.3.141 (http://dl6.globalstf.org/index.php/jet/article/view/160/148. Assessed July 8 2018)

  • Felix LG, Choi CW, Rue DM, Weast LE, Seward TP (2009) Robust glass-ceramics catalysts for biomass gasification. Environ Prog Sustain Energy 28(3):336–346. https://doi.org/10.1002/ep.10381

    Article  CAS  Google Scholar 

  • Gadsbøl RØ, Clausen LR, Ahrenfeldt J, Henriksen UB (2018) Design and analysis of upscaled twostage biomass gasifiers. In: Persson M, Scarlat N, Grassi A, Helm P (eds) Proceedings of 26th European biomass conference and exhibition, Copenhagen, Denmark, May 14th–17th (in preparation)

  • Gambardella A, Yahya YY (2017) Power-to-gas concepts integrated with syngas production through gasification of forest residues—process modelling. Master thesis, Chalmers University of Technology, Department of Energy and Environment, Gothenburg, Sweden

  • Gräbner M, von Morstein O, Rappold D, Günster W, Beysel G, Meyer B (2010) Constructability study on a German reference IGCC power plant with and without CO2-capture for hard coal and lignite. Energy Convers Manag 51:2179–2187. https://doi.org/10.1016/j.enconman.2010.03.011

    Article  CAS  Google Scholar 

  • Grahn M, Hansson J (2014) Prospects for domestic biofuels for transport in Sweden 2030 based on current production and future plans. WIREs Energy Environ 4(3):290–306. https://doi.org/10.1002/wene.138

    Article  CAS  Google Scholar 

  • Hamel C, Kaluza S, Unger C (2014) Katalysatoren zur Reformierung von Teer und Methan in biomassestämmigen Produktgasen der Wirbelschichtvergasung II—Vergleichende Untersuchungen und ableitbare Erkenntnisse (Catalysts for the reforming of tar and methane in biomass-based producer gases from fluidized bed gasification II—comparative investigations and deducible findings). In: Abraham R, Behrendt F, Bräkow D, Doloszeski H, Elsen R, Haenel MW, Klose W, Krzack S, Mühlen HJ, Specht M (eds) DGMK Tagungsbericht (congress proceedings) 2014-2, Fachbereichstagung Konversion von Biomassen und Kohlen (congress of department conversion of biomasses and coals), Rotenburg a.d. Fulda, Germany, May 12th–14th, pp 135–142

  • Hannula I (2015a) Synthetic fuels and light olefins from biomass residues, carbon dioxide and electricity—performance and cost analysis. Dissertation Aalto University, Department of Energy Technology, Finland. VTT Science 107

  • Hannula I (2015b) Co-production of synthetic fuels and district heat from biomass residues, carbon dioxide and electricity: performance and cost analysis. Biomass Bioenergy 74:26–46. https://doi.org/10.1016/j.biombioe.2015.01.006

    Article  CAS  Google Scholar 

  • Haro P, Trippe F, Stahl R, Henrich E (2013) Bio-syngas to gasoline and olefins via DME – A comprehensive techno-economic assessment. Appl Energy 108:54–65. https://doi.org/10.1016/j.apenergy.2013.03.015

    Article  CAS  Google Scholar 

  • Henriksen U, Ahrenfeldt J, Jensen TK, Gøbel B, Bentzen JD, Hindsgaul C, Sørensen LH (2006) The design, construction and operation of a 75 kW two-stage gasifier. Energy 31:1542–1553. https://doi.org/10.1016/j.energy.2005.05.031

    Article  CAS  Google Scholar 

  • Hofbauer H (2007) Conversion technologies: gasification overview. In: Maniatis K, Grimm HP, Helm P, Grassi A (eds), Proceedings of the 15th European biomass conference and exhibition, Berlin, Germany, May 7th–11th, ETA-Florence Renewable Energies, pp 5–10

  • Hofbauer H, Vogel A, Kaltschmitt M (2009) Vergasungstechnik (Gasification technology). In: Kaltschmitt M, Hartmann H, Hofbauer H (eds) Energie aus Biomasse—Grundlagen, Techniken und Verfahren (Energy from biomass—fundamentals, technologies and processes), 2nd edn. Springer, Berlin, pp 600–628

    Google Scholar 

  • Huang HJ, Ramaswamy S (2009) Modeling biomass gasification using thermodynamic equilibrium approach. Appl Biochem Biotechnol 154:193–204. https://doi.org/10.1007/s12010-008-8483-x

    Article  CAS  Google Scholar 

  • Icha P, Kuhs G (2018) Entwicklung der spezifischen Kohlendioxid-Emissionen des deutschen Strommix in den Jahren 1990–2017 (Development of the specifc carbon dioxide emissions in the German electricity mix in the years 1990–2017). Umweltbundesamt, Dessau-Roßlau, Germany. https://www.umweltbundesamt.de/sites/default/files/medien/1410/publikationen/2018-05-04_climate-change_11-2018_strommix-2018_0.pdf. Assessed 30 June 2018 (in German)

  • Ising M (2002) Zur katalytischen Spaltung teerartiger Kohlenwasserstoffe bei der Wirbelschichtvergasung von Biomasse (Contribution to catalytic decomposition of tar-like hydrocarbons from fluidized bed gasification of biomass), Dissertation (PhD thesis), University of Dortmund, Germany

  • Ising M, Unger CA, Althaus W (2004) Cogeneration with biomass gasification by producer gas driven block heat and power plants. In: van Swaaij WPM, Fjällström T, Helm P, Grassi A (eds) Proceedings of the 2nd World Biomass Conference, Rome, Italy, May 10th–14th, pp 801–804

  • Iskov H, Rasmussen NB (2013) Global screening of projects and technologies for Power-to-Gas and Bio-SNG—a reference report. Danish Gas Technology Centre, Hørsholm

    Google Scholar 

  • Kaisalo N (2017) Tar reforming in biomass gasification gas cleaning. PhD thesis, VTT SCIENCE 160, Aalto University publication series Doctoral Dissertations 132/2017, Finland. http://urn.fi/URN:ISBN:978-951-38-8560-1. Assessed 25 Nov 2018

  • Kaltschmitt M, Baumbach G (2001) Grundlagen der thermochemischen Umwandlung (Fundamentals of thermochemical conversion). In: Kaltschmitt M, Hartmann H (eds) Energie aus Biomasse – Grundlagen, Techniken und Verfahren (Energy from biomass – fundamentals, technologies and processes). Springer, Berlin, pp 272–281

    Google Scholar 

  • Karlbrink M (2015) An evaluation of the performance of the GoBiGas gasification process. Master thesis, Department of Energy and Environment, Division of Energy Technology, Chalmers University of Technology, Gothenburg, Sweden. http://publications.lib.chalmers.se/records/fulltext/221991/221991.pdf. Assessed 25 Nov 2018

  • Kersten SRA, Prins W, van der Drift A, van Swaaij WPM (2002) Interpretation of biomass gasification by ‘quasi’-equilibrium models. In: Palz W, Spitzer J, Maniatis K, Kwant K, Helm P, Grassi A (eds) Proceedings of the 12th European conference on biomass for energy, industry and climate protection Amsterdam, The Netherlands, June 17th–21st, ETA-Florence Renewable Energies, pp 772–776

  • Kirm I, Brandin J, Sanati M (2007) Shift catalysts in biomass generated synthesis gas. Top Catal 45:31–37. https://doi.org/10.1007/s11244-007-0236-5

    Article  CAS  Google Scholar 

  • Kopyscinski J, Schildhauer TJ, Biollaz SMA (2010) Production of synthetic natural gas (SNG) from coal and dry biomass—a technology review from 1950 to 2009. Fuel 89:1763–1783. https://doi.org/10.1016/j.fuel.2010.01.027

    Article  CAS  Google Scholar 

  • Kremling M, Briesemeister L, Garderer M, Fendt S, Spliethoff H (2017) Oxygen-blown entrained flow gasification of biomass: impact of fuel parameters and oxygen stoichiometric ratio. Energy Fuels 31:3949–3959. https://doi.org/10.1021/acs.energyfuels.6b02949

    Article  CAS  Google Scholar 

  • Landälv I, Gebart R, Marke B, Granberg F, Furusjö E, Löwnertz P, Öhrman OGW, Sørensen ES, Salomonsson P (2014) Two years experience of the BioDME project—a complete wood to wheel concept. Environ Prog Sustain Energy 33(3):744–750. https://doi.org/10.1002/ep.11993

    Article  CAS  Google Scholar 

  • LeViness S, Tonkovich AL, Jarosch K, Fitzgerald S, Yang B, McDaniel J (2011) Improved Fischer-Tropsch economics enabled by microchannel technology. Velocys 1–7 (https://www.researchgate.net/profile/Jeff_Mcdaniel/publication/267236523_Improved_Fischer-Tropsch_Economics_Enabled_by_Microchannel_Technology/links/552fb32c0cf2f2a588a8ce2c.pdf. Assessed 30 Jun 2018

  • Mac an Bhaird S, Devlin G, McDonnell K, Owende P, Mevissen N, Schulzke T, Unger C (2009) Quality of producer gas from different biogenous fuels. In: De Santi GF, Dallemand JF, Ossenbrink H, Grassi A, Helm P (eds), Proceedings of the 17th European biomass conference and exhibition, Hamburg, Germany, June 29th–July 3rd, ETA-Florence Renewable Energies, pp 614–620

  • meinbezirk.at (2017) Biomassekraftwerk Güssing steht vor Neustart (Biomass power station Güssing faces restart) https://www.meinbezirk.at/guessing/wirtschaft/biomassekraftwerk-guessing-steht-vor-neustart-d1985218.html. Assessed 30 Jun 2018 (in German)

  • Mevissen N, Schulzke T, Unger C (2009a) Production of DME from wood. In: Hofbauer H, Fuchs M (eds) Proceedings of the international conference on polygeneration strategies—ICPS09, Vienna, Austria, September 1st–4th, pp 1–10

  • Mevissen N, Schulzke T, Unger CA, an Bhaird SM (2009b) Thermodynamics of autothermal wood gasification. Environ Prog Sustain Energy 28(3):347–354. https://doi.org/10.1002/ep.10393

    Article  CAS  Google Scholar 

  • Mondal P, Ghosh S (2015) Thermodynamic performance assessment of a bio-gasification based small-scale combined cogeneration plant employing indirectly heated gas turbine. Int J Renew Energy Res 5:354–366

    Google Scholar 

  • Neubauer Y, Elhami OH (2016) Studies on the targeted development of porous systems in biogenic process chars for PAH adsorption for their application in gas processing. In: Faaij APC, Baxter D, Grassi A, Helm P (eds) Proceedings of 24th European biomass conference and exhibition, Amsterdam, The Netherlands, June 6th–9th, pp 815–817. https://doi.org/10.5071/24theubce2016-2cv.3.1

  • Olah GA, Goeppert A, Prakash GKS (2009) Beyond oil and gas: the methanol economy, 2nd edn. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim

    Book  Google Scholar 

  • Perry RH, Green DW, Mloney JO (1984) Perry’s chemical engineers’ handbook, 6th edn. McGraw-Hill Book Company, New York

    Google Scholar 

  • Pfeifer C, Rauch R, Hofbauer H (2004) In-bed catalytic tar reduction in a dual fluidized bed biomass steam gasifier. Ind Eng Chem Res 43:1634–1640. https://doi.org/10.1021/ie030742b

    Article  CAS  Google Scholar 

  • Pfeifer C, Hofbauer H, Unger C, Schulzke T, Ising M (2007) Dual fluidized bed steam gasification combined with catalytic gas cleaning. In: Maniatis K, Grimm HP, Helm P, Grassi A (eds) Proceedings of the 15th European biomass conference and exhibition, Berlin, Germany, May 7th–11th, ETA-Florence Renewable Energies, pp 614–620

  • Plass L (2005) From oil to gas: trends im anlagenbau (from oil to gas: trends in plant engineering and construction). Chem Ing Tech 77(9):1326–1331. https://doi.org/10.1002/cite.200500114

    Article  CAS  Google Scholar 

  • Prins MJ (2005) Thermodynamic analysis of biomass gasification and torrefaction. PhD thesis, Universiteit Eindhoven, The Netherlands. https://doi.org/10.6100/ir583729

  • Prins MJ, Ptasinski KJ, Janssen FJJG (2003) Thermodynamics of gas-char reactions: first and second law analysis. Chem Eng Sci 58:1003–1011. https://doi.org/10.1016/S0009-2509(02)00641-3

    Article  CAS  Google Scholar 

  • Pröll T, Siefert IG, Friedl A, Hofbauer H (2005) Removal of NH3 from biomass gasification producer gas by water condensing in an organic solvent scrubber. Ind Eng Chem Res 44(5):1576–1584. https://doi.org/10.1021/ie049669v

    Article  CAS  Google Scholar 

  • Ptasinski KJ, Devi L, Janssen FJJ (2004) Olivine as tar removal catalyst for biomass gasifiers. In: van Swaaij WPM, Fjällström T, Helm P, Grassi A (eds) Proceedings of the 2nd World Biomass Conference, Rome, Italy, May 10th–14th, pp 879–882

  • Rabou LPLM, Zwart RWR, Vreugdenhil BJ, Bos L (2009) Tar in biomass producer gas, the energy research centre of the Netherlands (ECN) experience: an enduring challenge. Energy Fuels 23(12):6189–6198. https://doi.org/10.1021/ef9007032

    Article  CAS  Google Scholar 

  • Rauch R, Bosch K, Hofbauer H, Świerczyński D, Courson C, Kiennemann A (2006) Comparison of different olivines for biomass steam gasification. In: Bridgwater AV, Boocock DGW (eds) Science in thermal and chemical biomass conversion, vol 1. CPL Press, London, pp 799–809

    Google Scholar 

  • Rauch R, Hrbek J, Hofbauer H (2013) Biomass gasification for synthesis gas production and applications of the syngas. WIREs Energy Environ 3(4):343–362. https://doi.org/10.1002/wene.97

    Article  Google Scholar 

  • Schulzke T (2011a) Chancen und Grenzen des Einsatzes der Wirbelschichtvergasung für die energetische Biomassenutzung im mittleren Leistungsbereich (Opportunities and constraints for the application of fluidized bed gasification for the energetic utilization of biomass in the medium range of capacity). In: Zschunke T (ed) Tagungsband Elektroenergie aus Biomasse in dezentraler Anwendung—Technik, Ökonomie, Ökologie (Proceedings of conference Electrical energy from biomass in decentralized application—technology, economy, ecology), Zittau, Germany, May 12th–13th, pp 71–84

  • Schulzke T (2011b) Economy of scale for CHP plants based on autothermal fluidized bed gasification. In: Faulstich M, Ossenbrink H, Dallemand JF, Baxter D, Grassi A, Helm P (eds) Proceedings of the 19th European biomass conference and exhibition, Berlin, Germany, June 6th–10th, pp 1485–1488. https://doi.org/10.5071/19theubce2011-vp2.3.32

  • Schulzke T (2012a) Schließung regionaler Stoffkreisläufe bei der dezentralen Strom- und Wärmeerzeugung in einer stationären Wirbelschichtvergasung—RegioSWS (Closure of regional cycles of materials in the area of distributed combined heat and power production with bubbling fluidized bed gasification). Final Project Report to Federal Ministry of Environment, Nature Conservation and Reactor Safety, Berlin, Germany, Grant Nr. 03KB014

  • Schulzke T (2012b) Minderung der Treibhausgasemissionen durch Stromerzeugung mittels Biomassevergasung: Potenziale und Kosten (Reduction of greenhouse gas emissions by means of electricity production by the use of biomass gasification). In: Zschunke T, Schneider R (eds) Tagungsband Elektroenergie aus Biomasse in dezentraler Anwendung—Technik, Ökonomie, Ökologie (Proceedings of conference Electrical energy from biomass in decentralized application—technology, economy, ecology), Zittau, Germany, May 6th–7th, pp 71–84

  • Schulzke T (2012c) Potential GHG Reduction and Reduction Cost of Combined Heat and Power Production by Gasification of Various Biomass Feedstock. In: Krautkremer B, Ossenbrink H, Baxter D, Dallemand JF, Grassi A, Helm P (eds) Proceedings of the 20th European biomass conference and exhibition, Milan, Italy, June 18th–22nd, ETA-Florence Renewable Energies, pp 2319–2324

  • Schulzke T (2013) Hinweise zur Optimierung von Biomassevergasern (Hints for the optimization of biomass gasifiers). In: Zschunke T, Schneider R (eds) Tagungsband Elektroenergie aus Biomasse in dezentraler Anwendung—Technik, Ökonomie, Ökologie (Proceedings of conference electrical energy from biomass in decentralized application—technology, economy, ecology), Zittau, Germany, May 6th–7th, pp 141–150

  • Schulzke T (2015) Concept for combined heat and power production from wood via gasification followed by catalytic gas cleaning. In: 4th Latin American congress biorefineries—science, technologies and innovation for the bioeconomy, concepcion, Chile, November 23rd–25th, pp 74–75

  • Schulzke T (2016) Synergies from direct coupling of biomass-to-liquid and power-to-liquid plants. Chem Eng Technol 40(2):254–259. https://doi.org/10.1002/ceat.201600179

    Article  CAS  Google Scholar 

  • Schulzke T, Unger C (2010). Methanisierung lignocellusestämmiger Synthesegase—Verfahrenstechnische und ökonomische Analyse von Gaserzeugungs- und Aufbereitungsverfahren (Methanation of synthesis gases originating from lignocellulose—engineering and economic analyses of gas production and upgrading processes). In: Abraham R, Bräkow D, Dinjus E. Haenel MW, Ising M, Klose W, Krzack S, Meier D, Mühlen HJ, Schmalfeld J, Schulze O, Specht M (eds) DGMK Tagungsbericht (congress proceedings) 2010–2, Fachbereichstagung Konversion von Biomassen und Kohlen (Congress of department conversion of biomasses and coals), Gelsenkirchen, Germany, May 10th–12th, pp 173–180

  • Schulzke T, Unger C (2011) Thermodynamics of wood gasification—adiabatic gasification with air at atmospheric pressure. In: Acosta MJ (ed) Advances in energy research, vol 6. Nova Science, New York, pp 179–198

    Google Scholar 

  • Schulzke T, Unger C (2015a) Flexibilisierung von Holzvergasungskraftwerken und Stromspeicheroptionen für Synthesegasanlagen (flexibilization of wood gasification power stations and options for electricity storage in synthesis gas plants). In: Zschunke T, Weidner M, Schneider R, Stur B (eds) Tagungsband (conference proceedings) Biomass to Power and Heat, Zittau, Germany, May 6th–7th, pp 94–103

  • Schulzke T, Unger CA (2015b) Converting surplus renewable electricity into bio-methanol by adding hydrogen to a wood-based methanol plant. In: 5th International conference on biorefinery—towards bioenergy (ICBB-2015), Vancouver, Canada, August 10th–12th

  • Schulzke T, Unger C (2016) Umwandlung von erneuerbarem Überschussstrom in bio-methanol durch Zugabe von Wasserstoff in einer holzbasierten Methanolanlage (conversion of renewable surplus electricity into bio-methanol by means of addition of hydrogen into a wood-based methanol plant). In: Abraham R, Behrendt F, Bräkow D, Doloszeski H, Elsen R, Haenel MW, Klose W, Krzack S, Mühlen HJ, Specht M (eds) DGMK Tagungsbericht (congress proceedings) 2016-2, Fachbereichstagung Konversion von Biomassen und Kohlen (Congress of department conversion of biomasses and coals), Rotenburg a.d. Fulda, Germany, May 9th–11th, pp 127–134

  • Schulzke T, Mevissen N, Unger C (2010). Die Herstellung von Dimethylether (DME) aus Holz (The production of dimethyl ether (DME) from wood). In: Abraham R, Bräkow D, Dinjus E. Haenel MW, Ising M, Klose W, Krzack S, Meier D, Mühlen HJ, Schmalfeld J, Schulze O, Specht M (eds) DGMK Tagungsbericht (congress proceedings) 2010–2, Fachbereichstagung Konversion von Biomassen und Kohlen (Congress of department conversion of biomasses and coals), Gelsenkirchen, Germany, May 10th–12th, pp 279–286

  • Schulzke T, Girod K, Jänisch T, Menne A, Unger C, Marzi T, Kleinschmidt R (2011) Production of liquid oxygenates from synthesis gas—test plants for catalytic processes and upscaling of catalyst preparation. In: Hofbauer H, Fuchs M (eds) Proceedings of the international conference on polygeneration strategies—ICPS11, Vienna, Austria, August 30th–September 1st, pp 177–185

  • Scur P (2001) Entwicklung, technische Erprobung und Optimierung der rückstandsfreien Zementherstellung als ganzheitlicher Prozess bei gleichzeitiger Verwertung verschiedener Reststoffe (Development, technical proving and optimization of the residue-free production of cement as wholistic process with simultaneous utilization of various wastes). Final report to BMBF (German Federal Ministry of Education and Research), Grant Number 01 ZH 943 C/6

  • Shen Y, Yoshikawa K (2013) Recent progresses in catalytic tar elimination during biomass gasification or pyrolysis—a review. Renew Sustain Energy Rev 21:371–392

    Article  CAS  Google Scholar 

  • Simell P, Hannula I, Tuomi S, Nieminen M, Kurkela E, Hiltunen I, Kaisalo N, Kihlman J (2014) Clean syngas from biomass—process development and concept assessment. Biomass Conv Bioref 4:357–370. https://doi.org/10.1007/s13399-014-0121-y

    Article  CAS  Google Scholar 

  • Stöcker M (2010) Methanol to Olefins (MTO) and Methanol to Gasoline (MTG). In: Čejka J, Corma A, Zones S (eds) Zeolites and catalysis: synthesis, reactions and applications. Wiley, Germany. https://doi.org/10.1002/9783527630295.ch22

    Chapter  Google Scholar 

  • Thrän D, Fischer E, Fritsche U, Hennenberg K, Oehmichen K, Pfeiffer D, Schmersahl R, Schröder T, Zeller V, Zeymer M (2010) Methoden zur stoffstromorientierten Beurteilung für Vorhaben im Rahmen des BMU-Förderprogramms „Energetische Biomassenutzung“, Teil 1: Technologiekennwerte, Gestehungskosten, Treibhausgasbilanzen (Methods for the material flow-oriented assessment for projects in the framework of the BMU funding program „Energetic use of biomass“, part 1: characteristic technological values, production costs, greenhouse gas balances), Version 1.1, DeutschesBiomasseForschungsZentrum (DBFZ), Leipzig, Germany

  • Thunman H, Seemann M, Berdugo Vilches T, Maric J, Pallares D, Ström H, Berndes G, Knutsson P, Larsson A, Breitholtz C, Santos O (2018) Advanced biofuel production via gasification—lessons learned from 200 man-years of research activity with Chalmers’ research gasifier and the GoBiGas demonstration plant. Energy Sci Eng 6(1):6–34. https://doi.org/10.1002/ese3.188

    Article  CAS  Google Scholar 

  • Tremel A, Becherer D, Fendt S, Gaderer M, Spliethoff H (2013) Performance of entrained flow and fluidised bed biomass gasifiers on different scales. Energy Convers Manag 69:95–106. https://doi.org/10.1016/j.enconman.2013.02.001

    Article  CAS  Google Scholar 

  • Varga C (2015) Heißgasreinigung von Produktgas aus der Biomasse-Dampfvergasung-Erprobung der Teerreduktion durch katalytisch aktive Filterkerzen und einen Reformer unter realen Bedingungen (Hot gas cleaning of product gases out of biomass steam gasifcation—testing of tar reduction by catalytically active filter candles and a reformer under real conditions). PhD thesis, TU Vienna, Austria

  • Verfondern K, Lensa W (2010) Nuclear coal gasification for hydrogen and synthetic fuels production. In: 18th International conference on nuclear engineering, vol 3, Xi’an, China, May 17th–21st, pp 67–76. https://doi.org/10.1115/icone18-29176

  • Viguié JC, Ullrich N, Porot P, Bournay L, Hecquet M, Rousseau J (2013) BioTfueL project: targeting the development of second-generation biodiesel and biojet fuels—Le projet BioTfueL: un projet de développement de biogazole et biokérosène de 2 génération. Oil Gas Sci Technol 68:935–946

    Google Scholar 

  • Xu P, Jin Y, Cheng Y (2017) Thermodynamic analysis of the gasification of municipal solid waste. Eng 3:416–422. https://doi.org/10.1016/J.ENG.2017.03.004

    Article  Google Scholar 

  • Yates JG, Lettieri P (2016) Conversion of biomass and waste fuels in fluidized-bed reactors. In: Yates JG, Lettieri P (eds) Fluidized-bed reactors: processes and operating conditions. Particle Technology Series, vol 26. Springer, Cham, pp 111–135. https://doi.org/10.1007/978-3-319-39593-7_4

    Chapter  Google Scholar 

  • Zwart RWR, Van der Drift A, Bos A, Visser HJM, Cieplik MK, Könemann HWJ (2009) oil-based gas washing—flexible tar removal for high-efficient production of clean heat and power as well as sustainable fuels and chemicals. Environ Prog Sustain Energy 28(3):324–335. https://doi.org/10.1002/ep.10383

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tim Schulzke.

Ethics declarations

Conflict of interest

There is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Schulzke, T. Biomass gasification: conversion of forest residues into heat, electricity and base chemicals. Chem. Pap. 73, 1833–1852 (2019). https://doi.org/10.1007/s11696-019-00801-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00801-1

Keywords

Navigation