Skip to main content
Log in

Structural analysis and rational design of orthogonal stacking system in an E. coli DegP PDZ1–peptide complex

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

The DegP is essential for clearance of denatured or aggregated components from the inner-membrane and periplasmic space in Escherichia coli (E. coli). The enzyme contains two regulatory PDZ domains that have been shown to act as substrate specificity determinant by binding to the C-terminal hydrophobic stretch of substrate proteins. Here, the complex structure of E. coli DegP PDZ1 domain with a phage-displayed C3H1 pentapeptide is modeled and examined using peptide grafting, virtual mutagenesis, and QM/MM calculation. An orthogonal stacking system is identified at the domain–peptide complex interface, which consists of a T-shaped cation-π stacking (t-stacking) and a paralleled cation-π stacking (p-stacking) formed from domain cationic residue R325 to peptide aromatic residues Trp−1 and Phe−4, respectively. A synergistic effect between t-stacking and p-stacking is observed; π-electron conjugation is primarily responsible for the synergistic effect. Subsequently, the two peptide aromatic residues are systematically replaced by other aromatic amino acids as well as a non-aromatic alanine to optimize the synergistic effect, from which the binding affinities of wild-type C3H1 peptide and seven variants to E. coli DegP PDZ1 domain are determined at micromolar level using fluorescence-based assay. A good linear correlation between experimental binding affinities and calculated binding energies is derived, with a Pearson’s correlation coefficient rp = 0.928. The aromatic Phe−4Tyr substitution can considerably improve peptide binding potency by 8.7-fold, whereas the non-aromatic substitutions at each of t-stacking and p-stacking or both can largely impair the peptide affinity by 20.7-fold (Phe−4Ala), 82.1-fold (Trp−1Ala) and 110.7-fold (Trp−1Ala/Phe−4Ala).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Bai Z, Hou S, Zhang S, Li Z, Zhou P (2017) Targeting self-binding peptides as a novel strategy to regulate protein activity and function: a case study on the proto-oncogene tyrosine protein kinase c-Src. J Chem Inf Model 57:835–845

    Article  CAS  PubMed  Google Scholar 

  • Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19:553–566

    Article  CAS  Google Scholar 

  • Chakrabarti P, Bhattacharyya R (2007) Geometry of nonbonded interactions involving planar groups in proteins. Prog Biophys Mol Biol 95:83–137

    Article  CAS  PubMed  Google Scholar 

  • Chang Z (2016) The function of the DegP (HtrA) protein: protease versus chaperone. IUBMB Life 68:904–907

    Article  CAS  PubMed  Google Scholar 

  • Duan Y, Wu C, Chowdhury S, Lee MC, Xiong G, Zhang W, Yang R, Cieplak P, Luo R, Lee T, Caldwell J, Wang J, Kollman P (2003) A point-charge force field for molecular mechanics simulations of proteins based on condensed-phase quantum mechanical calculations. J Comput Chem 24:1999–2012

    Article  CAS  PubMed  Google Scholar 

  • Ge X, Wang R, Ma J, Liu Y, Ezemaduka AN, Chen PR, Fu X, Chang Z (2014) DegP primarily functions as a protease for the biogenesis of β-barrel outer membrane proteins in the Gram-negative bacterium Escherichia coli. FEBS J 281:1226–1240

    Article  CAS  PubMed  Google Scholar 

  • Guo X, He D, Huang L, Liu L, Liu L, Yang H (2012a) Strain energy in enzyme–substrate binding: an energetic insight into the flexibility versus rigidity of enzyme active site. Comput Theor Chem 995:17–23

    Article  CAS  Google Scholar 

  • Guo X, He D, Liu L, Kuang R, Liu L (2012b) Use of QM/MM scheme to reproduce macromolecule-small molecule noncovalent binding energy. Comput Theor Chem 991:134–140

    Article  CAS  Google Scholar 

  • Hou T, Chen K, McLaughlin WA, Lu B, Wang W (2006) Computational analysis and prediction of the binding motif and protein interacting partners of the Abl SH3 domain. PLoS Comput Biol 2:e1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Iwanczyk J, Damjanovic D, Kooistra J, Leong V, Jomaa A, Ghirlando R, Ortega J (2007) Role of the PDZ domains in Escherichia coli DegP protein. J Bacteriol 189:3176–3186

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang J, Zhang X, Chen Y, Wu Y, Zhou ZH, Chang Z, Sui SF (2008) Activation of DegP chaperone-protease via formation of large cage-like oligomers upon binding to substrate proteins. Proc Natl Acad Sci USA 105:11939–11944

    Article  PubMed  Google Scholar 

  • Krivov GG, Shapovalov MV, Dunbrack RL (2009) Improved prediction of protein side-chain conformations with SCWRL4. Proteins 77:778–795

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Krojer T, Garrido-Franco M, Huber R, Ehrmann M, Clausen T (2002) Crystal structure of DegP (HtrA) reveals a new protease–chaperone machine. Nature 416:455–459

    Article  CAS  PubMed  Google Scholar 

  • Krojer T, Sawa J, Huber R, Clausen T (2010) HtrA proteases have a conserved activation mechanism that can be triggered by distinct molecular cues. Nat Struct Mol Biol 17:844–852

    Article  CAS  PubMed  Google Scholar 

  • Li S, Wang R, Li D, Ma J, Li H, He X, Chang Z, Weng Y (2014) Thermal-triggered proteinquake leads to disassembly of DegP hexamer as an imperative activation step. Sci Rep 4:4834

    Article  PubMed  PubMed Central  Google Scholar 

  • Li Z, Yan F, Miao Q, Meng Y, Wen L, Jiang Q, Zhou P (2019) Self-binding peptides: binding-upon-folding versus folding-upon-binding. J Theor Biol 469:25–34

    Article  CAS  PubMed  Google Scholar 

  • Murwantoko Yano M, Ueta Y, Murasaki A, Kanda H, Oka C, Kawaichi M (2004) Binding of proteins to the PDZ domain regulates proteolytic activity of HtrA1 serine protease. Biochem J 381:895–904

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pallen MJ, Wren BW (1997) The HtrA family of serine proteases. Mol Microbiol 26:209–221

    Article  CAS  PubMed  Google Scholar 

  • Runyon ST, Zhang Y, Appleton BA, Sazinsky SL, Wu P, Pan B, Wiesmann C, Skelton NJ, Sidhu SS (2007) Structural and functional analysis of the PDZ domains of HtrA1 and HtrA3. Protein Sci 16:2454–2471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Senn HM, Thiel W (2009) QM/MM methods for biomolecular systems. Angew Chem Int Ed Engl 48:1198–1229

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Lv Y, Zhou P, Yang L (2011) Characterization of PDZ domain-peptide interactions using an integrated protocol of QM/MM, PB/SA, and CFEA analyses. J Comput Aided Mol Des 25:947–958

    Article  CAS  PubMed  Google Scholar 

  • Tian F, Yang C, Wang C, Guo T, Zhou P (2014) Mutatomics analysis of the systematic thermostability profile of Bacillus subtilis lipase A. J Mol Model 20:2257

    Article  CAS  PubMed  Google Scholar 

  • Wessler S, Schneider G, Backert S (2017) Bacterial serine protease HtrA as a promising new target for antimicrobial therapy? Cell Commun Signal 15:4

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Wang C, Zhang S, Huang J, Zhou P (2015a) Structural and energetic insights into the intermolecular interaction among human leukocyte antigens, clinical hypersensitive drugs and antigenic peptides. Mol Simul 41:741–751

    Article  CAS  Google Scholar 

  • Yang C, Zhang S, He P, Wang C, Huang J, Zhou P (2015b) Self-binding peptides: folding or binding. J Chem Inf Model 55:329–342

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Zhang S, Bai Z, Hou S, Wu D, Huang J, Zhou P (2016) A two-step binding mechanism for the self-binding peptide recognition of target domains. Mol BioSyst 12:1201–1213

    Article  CAS  PubMed  Google Scholar 

  • Yu H, Zhou P, Deng M, Shang Z (2014) Indirect readout in protein–peptide recognition: a different story from classical biomolecular recognition. J Chem Inf Model 54:2022–2032

    Article  CAS  PubMed  Google Scholar 

  • Zhang Y, Appleton BA, Wu P, Wiesmann C, Sidhu SS (2007) Structural and functional analysis of the ligand specificity of the HtrA2/Omi PDZ domain. Protein Sci 16:1738–1750

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang D, He D, Huang L, Xu Y, Liu L (2018) Rational design and cyclization of MIG6 peptide to restore its binding affinity for ErbB family receptor tyrosine kinases. Int J Pept Res Ther 24:71–76

    Article  CAS  Google Scholar 

  • Zhang D, He D, Pan X, Xu Y, Liu L (2019) Molecular design of orthogonal stacking system at the complex interface of HtrA PDZ domain with its peptide ligands. J Serb Chem Soc. https://doi.org/10.2298/JSC181221029Z

    Article  Google Scholar 

  • Zhou P, Zou J, Tian F, Shang Z (2009) Fluorine bonding—how does it work in protein–ligand interactions? J Chem Inf Model 49:2344–2355

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Wang C, Tian F, Ren Y, Yang C, Huang J (2013a) Biomacromolecular quantitative structure-activity relationship (BioQSAR): a proof-of-concept study on the modeling, prediction and interpretation of protein-protein binding affinity. J Comput Aided Mol Des 27:67–78

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Yang C, Ren Y, Wang C, Tian F (2013b) What are the ideal properties for functional food peptides with antihypertensive effect? A computational peptidology approach. Food Chem 141:2967–2973

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Zhang S, Wang Y, Yang C, Huang J (2016) Structural modeling of HLA-B1502 peptide carbamazepine T-cell receptor complex architecture: implication for the molecular mechanism of carbamazepine-induced Stevens–Johnson syndrome toxic epidermal necrolysis. J Biomol Struct Dyn 34:1806–1817

    Article  CAS  PubMed  Google Scholar 

  • Zhou P, Hou S, Bai Z, Li Z, Wang H, Chen Z, Meng Y (2018) Disrupting the intramolecular interaction between proto-oncogene c-Src SH3 domain and its self-binding peptide PPII with rationally designed peptide ligands. Artif Cells Nanomed Biotechnol 46:1122–1131

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 21565016, 51762022 and 51564024), the Jiangxi Provincial Science and Technology Support Key Project (No. 20152ACG70021), the Jiangxi Provincial Natural Science Foundation (No. 2010GZH0073), the Jiangxi Provincial Department of Education’s Item of Science and Technology (No. GJJ150761), the Jiangxi Provincial Science and Technology Support Program (No. 20123BBG70218), the Jiangxi Provincial Educational Reform Research Program (No. JXJG-14-9-31), the Jinggangshan University Natural Science Item (No. JZ0813), and the Jinggangshan University Startup Fund for Doctor Research (No. JZB11035).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lijun Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, D., He, D., Pan, X. et al. Structural analysis and rational design of orthogonal stacking system in an E. coli DegP PDZ1–peptide complex. Chem. Pap. 73, 2469–2476 (2019). https://doi.org/10.1007/s11696-019-00797-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00797-8

Keywords

Navigation