Skip to main content

Advertisement

Log in

Proposing a novel theoretical optimized model for the combined dry and steam reforming of methane in the packed-bed reactors

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

A packed-bed reactor was modeled for combined dry and steam reforming (CDSR) and simulated using a two-dimensional heterogeneous model at steady-state condition. The model outputs showed a good agreement with experimental data. The effects of important operational parameters such as feed temperature, pressure, molar flow, and CO2/CH4 and H2O/CH4 ratios on methane conversion and H2/CO ratio in synthesis gas were also evaluated. Afterward, the modified artificial neural network (ANN) model was used for approximating the results of a simulation with high accuracy. The outputs of ANN model show that the predicted values of ANN model are in good agreement with those of the heterogeneous model, suggesting that the model was successfully developed to capture the correlation between operation conditions, methane conversion, and H2/CO ratio in the synthesis gas. Finally, a multi-objective optimization based on the hybrid of ANN and non-dominated sorting genetic algorithm-II (NSGA-II) was carried out to find the best-operating conditions for the methanol production and Fischer–Tropsch synthesis reaction with the desired H2/CO molar ratio of about two in synthesis gas. So, the main objectives for CDSR are providing a high methane conversion and also H2/CO ratio of two in the output synthesis gas.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

Abbreviations

\(C_{{p_{k} }}\) (kJ/kg.K):

Heat capacity of component k

D e,i (m2/s):

Catalyst effective mass diffusivity of component i

D er (m2/s):

Fluid effective radial mass diffusivity

D i,m (m2/s):

Molecular diffusion coefficient of component i in the mixture

D k,i (m2/s):

Knudsen diffusion coefficient of component i in the catalysts pores

d p :

Catalyst diameter

d t,i (m):

Internal diameter of the reformer

F i (kgmol/h):

Molar flow of component i

\(F_{i}^{^\circ }\) (kgmol/h):

Molar flow of component i at the reactor inlet

f (–):

Friction factor

G (\(\frac{\text{kg}}{{{\text{m}}^{ 2} . {\text{s}}}}\)):

Superficial mass flow velocity

h sf (\(\frac{\text{J}}{{{\text{m}}^{ 2} . {\text{s}} . {\text{K}}}}\)):

Catalyst–fluid thermal convective coefficient

h wf (\(\frac{\text{J}}{{{\text{m}}^{ 2} . {\text{s}} . {\text{K}}}}\)):

Wall–fluid thermal convective coefficient

g (m/s2):

Acceleration of gravity

K 1 (bar2):

Equilibrium constant of reaction 1

K 2 (bar2):

Equilibrium constant of reaction 2

K 3 (–):

Equilibrium constant of reaction 3

K 4 (bar2):

Equilibrium constant of reaction 4

\(K_{{{\text{CH}}_{ 4} }}\) (bar):

Adsorption constant of methane

\(K_{\text{CO}}\) (bar):

Adsorption constant of carbon monoxide

\(K_{{{\text{CO}}_{ 2} }}\) (bar):

Adsorption constant of carbon dioxide

\(K_{{H_{2} }}\) (bar):

Adsorption constant of hydrogen

\(K_{{{\text{H}}_{ 2} {\text{O}}}}\) (bar):

Adsorption constant of steam

k 1 (\(\frac{{{\text{kg mol}} . {\text{bar}}^{ 0. 5} }}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate coefficient of reaction 1

k 2 (\(\frac{{{\text{kgmol}} . {\text{bar}}^{ 0. 5} }}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate coefficient of reaction 2

k 3 (\(\frac{{{\text{kgmol}} .}}{{{\text{kg}}_{\text{cat}} . {\text{h}} . {\text{bar}}}}\)):

Rate coefficient of reaction 3

k 4 (\(\frac{{{\text{kgmol}} .}}{{{\text{kg}}_{\text{cat}} . {\text{h}} . {\text{bar}}^{ 2} }}\)):

Rate coefficient of reaction 4

\(k_{\text{af}}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Axial thermal conductivity of the fluid

\(k_{f}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Thermal conductivity of the fluid

\(k_{g}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Thermal molecular conductivity of the fluid

\(k_{p}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Thermal conductivity of the pellet

\(k_{rf}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Radial thermal conductivity of the fluid

\(k_{rs}\) (\(\frac{\text{J}}{{{\text{m}} . {\text{s}} . {\text{K}}}}\)):

Radial thermal conductivity of the catalyst

\(M_{av}\) (\(\frac{{\text{kg}}}{{\text{kgmol}}}\)):

Average molecular weight

\(M_{i}\) (\(\frac{{\text{kg}}}{{\text{kgmol}}}\)):

Molecular weight of component i

Nu (–):

Modified Nusselt number of the fluid

\(Nu_{wf}\) (–):

Nusselt number of the fluid

\(P_{{{\text{CH}}_{ 4} }}\) (bar):

Partial pressure of methane in gas phase

\(P_{\text{CO}}\) (bar):

Partial pressure of carbon monoxide in gas phase

\(P_{{{\text{CO}}_{ 2} }}\) (bar):

Partial pressure of carbon dioxide in gas phase

\(P_{{{\text{H}}_{ 2} }}\) (bar):

Partial pressure of hydrogen in gas phase

\(P_{{{\text{H}}_{ 2} {\text{O}}}}\) (bar):

Partial pressure of steam in gas phase

\(P_{i}\) (bar):

Partial pressure of component i in the feed

\(P_{s,i}\) (bar):

Partial pressure of component i in the catalyst particle

\(P_{t}\) (bar):

Total pressure

\(P_{t}^{^\circ }\) (bar):

Feed total pressure

\(Pe_{rf}\) (–):

Peclet number of the fluid in radial coordinate of the reactor

\(Pr\) (–):

Prandtl number of the fluid

Q (\(\frac{\text{kW}}{{{\text{m}}^{ 2} }}\)):

Heat flux per unit area at axial position z

\(R\) (\(\frac{{{\text{bar}} . {\text{m}}^{ 3} }}{{{\text{kgmol}} . {\text{K}}}}\)):

The gas universal constant

\(Re\) (–):

Reynolds number of the fluid

\(r\) (m):

Radial coordinate

\(r_{1}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction 1 in the catalyst pellet

\(r_{2}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction 2 in the catalyst pellet

\(r_{3}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction 3 in the catalyst pellet

\(r_{4}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction 3 in the catalyst pellet

\(r_{{CH_{4} }}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Production rate of methane

\(r_{i}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction i in the catalyst pellet

\(r_{i}^{s}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Rate of reaction i at the surface of the catalyst pellet

\(r_{{t_{i} }}\) (m):

Internal radius of the reactor tube

\(r_{{t_{o} }}\) (m):

External radius of the reactor tube

\(T\) (K):

Gas temperature

\(T^{^\circ }\) (K):

Feed temperature

\(T_{{r_{{t_{i} }} }}\) (K):

Gas-phase temperature inside the tube wall

\(T_{s}\) (K):

Tube skin temperature

\(U\) (\(\frac{\text{kW}}{{{\text{m}}^{ 2} . {\text{K}}}}\)):

Overall heat-transfer coefficient

\(u_{s}\) (\(\frac{{{\text{m}}^{ 3}_{\text{f}} }}{{{\text{m}}^{ 2}_{\text{r}} . {\text{s}}}}\)):

Superficial velocity

\(V\) (m3):

Volume of the catalyst particle

\(X_{i}\) (–):

Conversion of component i

\(y_{i}\) (–):

Mole fraction of component i

\(Z^{*}\) (–):

Dimensionless length of the reactor

\(z\) (m):

Axial coordinate

\(\alpha_{w}\) (\(\frac{\text{kW}}{{{\text{m}}^{ 2} . {\text{K}}}}\)):

Wall heat-transfer coefficient

\(\Delta H_{i,298K}\) (\({\text{kJ/gmol}}\)):

Standard enthalpy of reaction i

\(\Delta H_{ri}\) (\({\text{kJ/gmol}}\)):

Heat of reaction i

\(\rho_{b}\) (\(\frac{\text{kg}}{{{\text{m}}^{ 3}_{\text{f}} }}\)):

Packed-bed density

\(\rho_{g}\) (\(\frac{\text{kg}}{{{\text{m}}^{ 3}_{\text{f}} }}\)):

Gas density

\(\rho_{p}\) (\(\frac{\text{kg}}{{{\text{m}}^{ 3}_{\text{cat}} }}\)):

Catalyst density

\(\eta_{i}\) (–):

Effectiveness factor of reaction i

\(\lambda_{er}\) (\(\frac{\text{kW}}{{{\text{m}} . {\text{K}}}}\)):

Effective radial thermal conductivity

\(\lambda_{t}\) (\(\frac{\text{kW}}{{{\text{m}} . {\text{K}}}}\)):

Thermal conductivity of tube metal

\(\xi\) (m):

Radial coordinate of the equivalent catalyst particle

\(\xi_{eq}\) (m):

External radius of the equivalent catalyst particle

\(\xi_{in}\) (m):

Internal radius of the equivalent catalyst particle

\(\omega\) (m):

Radial coordinate of the spherical catalyst particle

\(\omega_{0}\) (m):

Radial of the spherical catalyst particle

\(\left( {r\eta } \right)_{i}\) (\(\frac{\text{kgmol}}{{{\text{kg}}_{\text{cat}} . {\text{h}}}}\)):

Production rate of component i in the gas phase

\(\mu\) (\(\frac{\text{kg}}{{{\text{m}} . {\text{s}}}}\)):

Viscosity of the fluid

\(\mu_{i}\) (\(\frac{\text{kg}}{{{\text{m}} . {\text{s}}}}\)):

Viscosity of the component i

\(\varepsilon_{s}\) (–):

Catalyst porosity

τ (–):

The catalyst tortuosity

References

  • Abbasi M, Soleymani AR, Parssa JB (2014) Operation simulation of a recycled electrochemical ozone generator using artificial neural network. Chem Eng Res Des 92(11):2618–2625

    Article  CAS  Google Scholar 

  • Aghaeinejad-Meybodi A, Ebadi A, Shafiei S, Khataee A, Rostampour M (2015) Modeling and optimization of antidepressant drug fluoxetine removal in aqueous media by ozone/H2O2 process: comparison of central composite design and artificial neural network approaches. J Taiwan Inst Chem Eng 48:40–48

    Article  CAS  Google Scholar 

  • Ajbar A, Alhumaizi K, Soliman M (2011) Modeling and simulations of a reformer used in direct reduction of iron. Korean J Chem Eng 28(12):2242–2249

    Article  CAS  Google Scholar 

  • Al-Nakoua MA, El-Naas MH (2012) Combined steam and dry reforming of methane in narrow channel reactors. Int J Hydrog Energy 37(9):7538–7544

    Article  CAS  Google Scholar 

  • Askari S, Halladj R, Azarhoosh MJ (2015) Modeling and optimization of catalytic performance of SAPO-34 nanocatalysts synthesized sonochemically using a new hybrid of non-dominated sorting genetic algorithm-II based artificial neural networks (NSGA-II-ANNs). RSC Adv 5(65):52788–52800

    Article  CAS  Google Scholar 

  • Assefi P, Ghaedi M, Ansari A, Habibi M, Momeni M (2014) Artificial neural network optimization for removal of hazardous dye Eosin Y from aqueous solution using Co 2 O 3-NP-AC: isotherm and kinetics study. J Ind Eng Chem 20(5):2905–2913

    Article  CAS  Google Scholar 

  • Azarhoosh M, Farivar F, Ebrahim HA (2014) Simulation and optimization of a horizontal ammonia synthesis reactor using genetic algorithm. RSC Adv 4(26):13419–13429

    Article  CAS  Google Scholar 

  • Azarhoosh MJ, Ale Ebrahim H, Pourtarah S (2016a) Simulating and optimizing hydrogen production by low-pressure autothermal reforming of natural gas using non-dominated sorting genetic algorithm-II. Chem Biochem Eng Q 29(4):519–531

    Article  CAS  Google Scholar 

  • Azarhoosh M, Ebrahim HA, Pourtarah S (2016b) Simulating and optimizing auto-thermal reforming of methane to synthesis gas using a non-dominated sorting genetic algorithm II method. Chem Eng Commun 203(1):53–63

    Article  CAS  Google Scholar 

  • Azarhoosh MJ, Halladj R, Askari S (2017a) A dynamic kinetic model for methanol to light olefins reactions over a nanohierarchical SAPO-34 catalyst: catalyst synthesis, model presentation, and validation at the bench scale. Int J Chem Kinet 50(3):149–163

    Article  CAS  Google Scholar 

  • Azarhoosh MJ, Halladj R, Askari S (2017b) Presenting a new kinetic model for methanol to light olefins reactions over a hierarchical SAPO-34 catalyst using the Langmuir–Hinshelwood–Hougen–Watson mechanism. J Phys Condens Matter 42:425202

    Article  Google Scholar 

  • Azarhoosh MJ, Halladj R, Askari S (2018) Application of evolutionary algorithms for modelling and optimisation of ultrasound-related parameters on synthesised SAPO-34 catalysts: crystallinity and particle size. Prog React Kinet Mech 43(3–4):236–243

    Article  CAS  Google Scholar 

  • Bird RB, Warren ES, Lightfood EN (2002) Transport phenomena. Wiley, New York

    Google Scholar 

  • Chapra SC, Canale R (2001) Numerical methods for engineers: with software and programming applications. McGraw-Hill Higher Education, New York

    Google Scholar 

  • Choudhary VR, Mondal KC (2006) CO2 reforming of methane combined with steam reforming or partial oxidation of methane to syngas over NdCoO3 perovskite-type mixed metal-oxide catalyst. Appl Energy 83(9):1024–1032

    Article  CAS  Google Scholar 

  • Coombes KR, Hunt BR, Lipsman RL, Osborn JE, Stuck GJ (1999) Differential equations with MATLAB. Wiley, New York

    Google Scholar 

  • Danilova M, Fedorova Z, Kuzmin V, Zaikovskii V, Porsin A, Krieger T (2015) Combined steam and carbon dioxide reforming of methane over porous nickel based catalysts. Catal Sci Technol 5(5):2761–2768

    Article  CAS  Google Scholar 

  • De Smet C, De Croon M, Berger R, Marin G, Schouten J (2001) Design of adiabatic fixed-bed reactors for the partial oxidation of methane to synthesis gas. Application to production of methanol and hydrogen-for-fuel-cells. Chem Eng Sci 56(16):4849–4861

    Article  Google Scholar 

  • Dixon AG, Cresswell DL (1979) Theoretical prediction of effective heat transfer parameters in packed beds. AIChE J 25(4):663–676

    Article  CAS  Google Scholar 

  • Dybkjaer I (1995) Tubular reforming and autothermal reforming of natural gas—an overview of available processes. Fuel Process Technol 42(2):85–107

    Article  Google Scholar 

  • Elnashaie S, Adris A, Soliman M, Al-Ubaid A (1992) Digital simulation of industrial steam reformers for natural gas using heterogeneous models. Can J Chem Eng 70(4):786–793

    Article  CAS  Google Scholar 

  • Froment GF, Bischoff KB, De Wilde J (2010) Chemical reactor analysis and design. Hoboken, New Jersey

    Google Scholar 

  • Gerald CF, Wheatley PO (1984) Applied numerical analysis. Addison-Wesley, Reading

    Google Scholar 

  • Ghaedi M, Ghaedi A, Negintaji E, Ansari A, Mohammadi F (2014) Artificial neural network—imperialist competitive algorithm based optimization for removal of sunset yellow using Zn(OH)2 nanoparticles-activated carbon. J Ind Eng Chem 20(6):4332–4343

    Article  CAS  Google Scholar 

  • Golrokh Sani A, Ale Ebrahim H, Azarhoosh MJ (2018) 8-Lump kinetic model for fluid catalytic cracking with olefin detailed distribution study. Fuel 225:322–335

    Article  CAS  Google Scholar 

  • Green D, Perry R (2007) Perry’s chemical engineering’s handbook. McGraw-Hill Proffesional, New York

    Google Scholar 

  • Handley D, Heggs P (1968) Momentum and heat transfer mechanisms in regular shaped packings. Trans Inst Chem Eng 46(9):T251–T264

    Google Scholar 

  • Hoseinzade L, Adams TA (2018) Dynamic modeling of integrated mixed reforming and carbonless heat systems. Ind Eng Chem Res 57(17):6013–6023

    Article  CAS  Google Scholar 

  • Jun HJ, Park M-J, Baek S-C, Bae JW, Ha K-S, Jun K-W (2011) Kinetics modeling for the mixed reforming of methane over Ni-CeO2/MgAl2O4 catalyst. J Nat Gas Chem 20(1):9–17

    Article  CAS  Google Scholar 

  • Koo KY, Lee S-H, Jung UH, Roh H-S, Yoon WL (2014) Syngas production via combined steam and carbon dioxide reforming of methane over Ni–Ce/MgAl2O4 catalysts with enhanced coke resistance. Fuel Process Technol 119:151–157

    Article  CAS  Google Scholar 

  • Liu H, He D (2012) Recent progress on Ni-based catalysts in partial oxidation of methane to syngas. Catal Surv Asia 16(2):53–61

    Article  CAS  Google Scholar 

  • Liwen C, Preeti G, Helen LH (2018) Sustainability assessment of combined steam and dry reforming versus tri-reforming of methane for syngas production. Asia-Pac J Chem Eng 13(2):e2168

    Article  CAS  Google Scholar 

  • Murmura MA, Cerbelli S, Annesini MC (2017) Transport-reaction-permeation regimes in catalytic membrane reactors for hydrogen production. The steam reforming of methane as a case study. Chem Eng Sci 162:88–103

    Article  CAS  Google Scholar 

  • Noureldin MM, Elbashir NO, El-Halwagi MM (2013) Optimization and selection of reforming approaches for syngas generation from natural/shale gas. Ind Eng Chem Res 53(5):1841–1855

    Article  CAS  Google Scholar 

  • Othmer K (1995) Encyclopedia of chemical technology. Wiley, New York

    Google Scholar 

  • Özkara-Aydınoğlu Ş (2010) Thermodynamic equilibrium analysis of combined carbon dioxide reforming with steam reforming of methane to synthesis gas. Int J Hydrog Energy 35(23):12821–12828

    Article  CAS  Google Scholar 

  • Park N, Park M-J, Baek S-C, Ha K-S, Lee Y-J, Kwak G, Park H-G, Jun K-W (2014) Modeling and optimization of the mixed reforming of methane: maximizing CO2 utilization for non-equilibrated reaction. Fuel 115:357–365

    Article  CAS  Google Scholar 

  • Pedernera MN, Piña J, Borio DO, Bucalá V (2003) Use of a heterogeneous two-dimensional model to improve the primary steam reformer performance. Chem Eng J 94(1):29–40

    Article  CAS  Google Scholar 

  • Roh H-S, Koo KY, Jeong JH, Seo YT, Seo DJ, Seo Y-S, Yoon WL, Park SB (2007) Combined reforming of methane over supported Ni catalysts. Catal Lett 117(1–2):85–90

    Article  CAS  Google Scholar 

  • Rostrup-Nielsen JR (1984) Catalytic steam reforming. Catalysis. Springer, Berlin, pp 1–117

    Google Scholar 

  • Ryi S-K, Lee S-W, Park J-W, Oh D-K, Park J-S, Kim SS (2014) Combined steam and CO2 reforming of methane using catalytic nickel membrane for gas to liquid (GTL) process. Catal Today 236:49–56

    Article  CAS  Google Scholar 

  • Shojaeimehr T, Rahimpour F, Khadivi MA, Sadeghi M (2014) A modeling study by response surface methodology (RSM) and artificial neural network (ANN) on Cu2+ adsorption optimization using light expended clay aggregate (LECA). J Ind Eng Chem 20(3):870–880

    Article  CAS  Google Scholar 

  • Son IH, Lee SJ, Soon A, Roh H-S, Lee H (2013) Steam treatment on Ni/γ-Al2O3 for enhanced carbon resistance in combined steam and carbon dioxide reforming of methane. Appl Catal B 134:103–109

    Article  CAS  Google Scholar 

  • SRI (1979) Synthesis gas by steam reforming

  • Xu J, Froment GF (1989) Methane steam reforming, methanation and water–gas shift: I. Intrinsic kinetics. AIChE J 35(1):88–96

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad Javad Azarhoosh.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendices

Appendix: Governing gas property and transport coefficients

Average molecular weight

The average molecular weight of gas phase was gained using the following formula (Murmura et al. 2017):

$$M_{\text{av}} = \mathop \sum \limits_{i = 1}^{n} y_{i} M_{i} \left( {n:{\text{number of components}}} \right).$$
(A1)

Fluid effective radial mass diffusivity

The fluid effective radial mass diffusivity (\(D_{\text{er}}\)) was obtained from the following equation (Froment et al. 2010):

$$D_{\text{er}} = \left( {u_{s} d_{p} } \right)/{\text{Pe}}_{\text{rf}} .$$
(A2)

The radial Peclet number in radial coordinate of the reactor (\({\text{Pe}}_{\text{rf}} )\) was achieved from a graph that is illustrated against Reynolds number in Froment et al. (2010).

The Reynolds number was calculated as follows (Froment et al. 2010):

$$\text{Re} = \frac{{d_{\text{p}} \rho_{\text{g}} u_{\text{s}} }}{\mu }.$$
(A3)

The viscosity of the gas-phase mixture (μ) was obtained by Ermley and Wilke method as follows (Green and Perry 2007):

$$\mu = \mathop \sum \limits_{i = 1}^{n} \frac{{\mu_{i} }}{{1 + \mathop \sum \nolimits_{j = 1}^{n} \left( {Q_{ij} \frac{{y_{j} }}{{y_{i} }}} \right)}},$$
(A4)

where

$$Q_{ij} = \frac{{1 + \left[ {\left( {\frac{{\mu_{i} }}{{\mu_{j} }}} \right)^{0.5} \left( {\frac{{M_{j} }}{{M_{i} }}} \right)^{0.25} } \right]^{2} }}{{\sqrt 8 \left[ {1 + \frac{{M_{i} }}{{M_{j} }}} \right]^{0.5} }}.$$
(A5)

Different components Viscosity was reported as a function of temperature as follows (Green and Perry 2007):

$$\mu = \frac{{1000{\text{AT}}^{B} }}{{1 + \frac{C}{T} + \frac{D}{{T^{2} }}}}.$$
(A6)

Constants A, B, C and D are accessible in the references.

By modifying the ideal gas law, the following equation was obtained to determine the gas-phase density (Green and Perry 2007):

$$\rho_{g} = \frac{{P_{t} M_{\text{av}} }}{\text{RT}}.$$
(A7)

Radial effective thermal conductivity

The radial effective thermal conductivity was obtained from the following equation (Dixon and Cresswell 1979):

$$\lambda_{\text{er}} = k_{\text{rf}} + k_{\text{rs}} \left[ {\frac{{1 + 8k_{\text{rf}} /\left( {h_{\text{wf}} d_{p} } \right)}}{{1 + 16/3k_{\text{rs}} \left( {\frac{1}{{h_{\text{sf}} d_{p} }} + \frac{0.1}{{k_{p} }}} \right)}}} \right]\left( {1 - \varepsilon_{s} } \right)\left( {\frac{{d_{t,i} }}{{d_{p} }}} \right)^{2} .$$
(A8)

The wall–fluid thermal convection coefficient (\(h_{\text{wf}}\)) was determined as follows (Dixon and Cresswell 1979):

$$h_{\text{wf}} = \frac{{{\text{Nu}}_{\text{wf}} k_{g} }}{{d_{p} }},$$
(A9)

where the Nusselt number of the fluid in touch with the wall (\({\text{Nu}}_{\text{wf}}\)) is determined as follows (Dixon and Cresswell 1979):

$${\text{Nu}}_{\text{wf}} = 0.22{\text{Re}}^{0.75} .$$
(A10)

Catalyst–fluid thermal convective coefficient was calculated by Heggs and Handley method as follows (Handley and Heggs 1968):

$$h_{\text{sf}} = \frac{0.255}{{\varepsilon_{s} }} \times \frac{{k_{\text{af}} }}{{d_{p} }}\Pr^{1/3} \text{Re}^{2/3} .$$
(A11)

The gas-phase radial thermal conductivity coefficient can be achieved from the following equation (Othmer 1995):

$$k_{\text{rf}} = \frac{{k_{f} \text{Re} \Pr }}{{{\text{Pe}}_{\text{rf}} }}.$$
(A12)

The thermal conductivity of catalyst (krs) can be achieved by Zehner and Sculunder method (Dixon and Cresswell 1979).

Wall heat-transfer coefficient

The wall heat-transfer coefficient was reported as the following equation (Dixon and Cresswell 1979):

$$\alpha_{w} = \frac{{{\text{Nu}} \times k_{f} }}{{d_{p} }},$$
(A13)

where

$${\text{Nu}} = {\text{Nu}}_{\text{wf}} \left( {1 + \frac{{10\left( {{\text{k}}_{\text{rs}} /{\text{k}}_{\text{f}} } \right)}}{{{\text{Re}}.{ \Pr }}}} \right),$$
(A14)

where Nu is the modified Nusselt number of the fluid.

Catalyst effective radial mass diffusivity

The catalyst effective radial mass diffusivity was determined as follows (De Smet et al. 2001):

$$\frac{1}{{D_{e,i} }} = \left( {\frac{\tau }{{\varepsilon_{s} }}\left( {\frac{1}{{D_{i,m} }} + \frac{1}{{D_{k,i} }}} \right)} \right).$$
(A15)

For calculation of \(D_{i,m}\), effective binary diffusion coefficient were determined from Wike. Then, by the Stefan–Maxwell equation the effective diffusion coefficient of component i in the multicomponent mixture was calculated equation (Froment et al. 2010).

The Knudsen diffusivity can be obtained from the kinetic theory of gases (Bird et al. 2002):

$$D_{k,i} = \frac{{d_{p} }}{3}(8\frac{\text{RT}}{{\pi M_{i} }})^{0.5} .$$
(A16)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lotfi, N., Ebrahim, H.A. & Azarhoosh, M.J. Proposing a novel theoretical optimized model for the combined dry and steam reforming of methane in the packed-bed reactors. Chem. Pap. 73, 2309–2328 (2019). https://doi.org/10.1007/s11696-019-00782-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-019-00782-1

Keywords

Navigation