Skip to main content

Study on the transesterification and mechanism of bisphenol A and dimethyl carbonate catalyzed by organotin oxide

Abstract

(CF3C6H4)2SnO, (CH3C6H4)2SnO and Ph2SnO were successfully synthesized for the transesterification of DMC with BPA. The products of mono-methylcarbonate-ended-BPA (MmC(1)) and two-methylcarbonate-ended-BPA (DmC(1)) were selectively synthesized over them. The catalysts were characterized by FT-IR, TG and XPS. When Ph2SnO was used as the catalyst at 170 °C, the BPA conversion reached to 28.60% and the transesterification selectivity reached to 98.35%. As for (CF3C6H4)2SnO, BPA conversion and transesterification selectivity declined to 12.48% and 64.74%, respectively. The BPA conversion increased to 42.83%, but the transesterification selectivity declined to 44.55% over (CF3C6H4)2SnO. Notability, the higher transesterification selectivity of Ph2SnO was due to its lowest electron binding energy of Sn4+. More importantly, the DMC adsorption, activation and decomposition process over (CF3C6H4)2SnO, (CH3C6H4)2SnO and Ph2SnO were characterized by TG–MS and in situ DRIFT techniques, which provided more information about the mechanism of transesterification and methylation.

This is a preview of subscription content, access via your institution.

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Scheme 2
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Scheme 3

References

  1. Artham T, Doble M (2008) Biodegradation of aliphatic and aromatic polycarbonates. Macromol Biosci 8:14–24. https://doi.org/10.1002/mabi.200700106

    Article  CAS  PubMed  Google Scholar 

  2. Bae KW (2015) The role of carbon deposition in the gas phase transesterification of dimethylcarbonate and phenol over TiO2/SiO2 catalyst. Appl Catal A-Gen 194:403–414. https://doi.org/10.1016/j.carbpol.2009.10.056

    CAS  Article  Google Scholar 

  3. Bolon DA, Hallgren JE (1984) Synthesis of polycarbonate from dialkyl carbonate and bisphenol diester, in, US

  4. Bonino F, Damin A, Bordiga S, Selva M, Tundo P, Zecchina A (2005) Dimethyl carbonate in the supercages of NaY zeolite: the role of local fields in promoting methylation and carboxymethylation activity. Angew Chem Int Edit 44:4774. https://doi.org/10.1002/anie.200500110

    Article  CAS  Google Scholar 

  5. Curtius U, Bottenbruch L, Schnell H (1969) quaternary ammonium phosphonium and arsonium catalysts for the production of polycarbonates by the transesterification method, in, US

  6. Deshpande MM, Jadhav AS, Gunari AA, Sehra JC, Sivaram S (1995) Polycarbonate synthesis by the melt phase carbonate-ester interchange reaction of bisphenol-A diacetate with dimethyl carbonate. J Poly Sci Part A Polym Chem 33:701–705. https://doi.org/10.1002/pola.1995.080330411

    Article  CAS  Google Scholar 

  7. Distaso M, Quaranta E (2008) Sc(OTf) 3 -catalyzed carbomethoxylation of aliphatic amines with dimethyl carbonate (DMC): DMC activation by η1-O(C=O) coordination to Sc(III) and its relevance to catalysis. J Catal 253:278–288. https://doi.org/10.1016/j.jcat.2007.11.004

    Article  CAS  Google Scholar 

  8. Fukuoka S, Kawamura M, Komiya K, Tojo M, Hachiya H, Hasegawa K, Aminaka M, Okamoto H, Fukawa I, Konno S (2003) A novel non-phosgene polycarbonate production process using by-product CO2 as starting material, Green. Chem 5:497–507. https://doi.org/10.1039/B304963A

    CAS  Article  Google Scholar 

  9. Gao Y, Li ZH, Su KM, Cheng BW (2016) Excellent performance of TiO2(B) nanotubes in selective transesterification of DMC with phenol derivatives. Chem Eng J 301:12–18. https://doi.org/10.1016/j.cej.2016.04.036

    Article  CAS  Google Scholar 

  10. Goyal M, Nagahata R, Sugiyama J (1999a) Direct synthesis of diphenyl carbonate by oxidative carbonylation of phenol using Pd–Cu based redox catalyst system. J Mol Catal A: Chem 137:147–154. https://doi.org/10.1016/S1381-1169(98)00122-8

    Article  CAS  Google Scholar 

  11. Goyal M, Nagahata R, Sugiyama JI, Asai M, Ueda M, Takeuchi K (1999b) Direct synthesis of aromatic polycarbonate from polymerization of bisphenol A with CO using a Pd–Cu catalyst system. Polymer 40:3237–3241. https://doi.org/10.1016/S0032-3861(98)00579-5

    Article  CAS  Google Scholar 

  12. Goyal M, Nagahata R, Sugiyama J, Asai M, Ueda M, Takeuchi K (2000) Pd catalyzed polycarbonate synthesis from bisphenol A and CO: control of polymer chain—end structure. Polymer 41:2289–2293. https://doi.org/10.1016/S0032-3861(99)00583-2

    Article  CAS  Google Scholar 

  13. Haba O, Itakura I, Ueda M, Kuze S (2015) Synthesis of polycarbonate from dimethyl carbonate and bisphenol-a through a non-phosgene process. J Poly Sci Part A Polym Chem 37:2087–2093. 10.1002/(SICI)1099-0518(19990701)37:13<2087::AID-POLA23>3.0.CO;2-5

  14. Hallgren JE, Lucas GM (1981) ChemInform abstract: the palladium-catalyzed synthesis of diphenyl carbonate from phenol, carbon monoxide, and oxygen. Ii. Aqueous sodium hydroxide as a base. J Cheminformmatics 12:135–139. https://doi.org/10.1016/S0022-328X(00)85533-3

    Article  Google Scholar 

  15. He X, Li Z, Su K, Cheng B, Ming J (2013) Study on the reaction between bisphenol A and dimethyl carbonate over organotin oxide. Catal Commun 33:20–23. https://doi.org/10.1016/j.catcom.2012.12.017

    Article  CAS  Google Scholar 

  16. Huang S, Yan B, Wang S, Ma X (2015) Recent advances in dialkyl carbonates synthesis and applications. Chem Soc Rev 46:3079–3116. https://doi.org/10.1039/C4CS00374H

    Article  Google Scholar 

  17. Ishii H, Goyal M, Ueda M, Takeuchi K, Asai M (2000) Oxidative carbonylation of phenol to diphenyl carbonate catalyzed by Pd complex with diimine ligands. Catal Lett 201:101–105. https://doi.org/10.1023/A:101904460

    CAS  Article  Google Scholar 

  18. Jing L, Sun X, Cai W, Xu Z, Du Y, Fu H (2003) The preparation and characterization of nanoparticle TiO2/Ti films and their photocatalytic activity. J Phys Chem Solids 64:615–623. https://doi.org/10.1016/S0022-3697(02)00362-1

    Article  CAS  Google Scholar 

  19. Kim Y, Choi KY (1993) Multistage melt polymerization of bisphenol-A and diphenyl carbonate to polycarbonate. J Appl Polym Sci 49:747–764. https://doi.org/10.1002/app.1993.070490501

    Article  CAS  Google Scholar 

  20. Kim WB, Lee JS (2010) Comparison of polycarbonate precursors synthesized from catalytic reactions of bisphenol-A with diphenyl carbonate, dimethyl carbonate, or carbon monoxide. J Appl Polym Sci 86:937–947. https://doi.org/10.1002/app.11026

    Article  CAS  Google Scholar 

  21. Kim Y, Choi KY, Chamberlin TA (1992) Kinetics of melt transesterification of diphenyl carbonate and bisphenol A to polycarbonate with lithium hydroxide monohydrate catalyst. Ind Eng Chem Res 31:2118–2127. https://doi.org/10.1021/ie00009a008

    Article  CAS  Google Scholar 

  22. Li Z, Su K, Cheng B, Ming J, Zhang L, Xu Y (2011) Promotion of organotin modified SBA-15 in the selective carboxylation of BPA with DMC. Catal Commun 12:932–935. https://doi.org/10.1016/j.catcom.2011.02.015

    Article  CAS  Google Scholar 

  23. Liang Y, Su K, Cao L, Li Z (2019) Lithium doped TiO2 as catalysts for the transesterification of bisphenol-A with dimethyl carbonate. J Mol Catal A: Chem 465:16–23. https://doi.org/10.1016/j.mcat.2018.12.022

    Article  CAS  Google Scholar 

  24. Moiseev II, Vargaftik MN, Chernysheva TV, Stromnova TA, Gekhman AE, Tsirkov GA, Makhlina AM (1996) Catalysis with a palladium giant cluster: phenol oxidative carbonylation to diphenyl carbonate conjugated with reductive nitrobenzene conversion. J Mol Catal A: Chem 1(108):77–85. https://doi.org/10.1016/1381-1169(95)00292-8

    Article  Google Scholar 

  25. Pokharkar V, Sivaram S (1995) Poly(alkylene carbonate)s by the carbonate interchange reaction of aliphatic diols with dimethyl carbonate: synthesis and characterization. Polymer 36:4851–4854. https://doi.org/10.1016/0032-3861(95)99302-B

    Article  CAS  Google Scholar 

  26. Raab V, Merz M, Sundermeyer J (2001) Ligand effects in the copper catalyzed aerobic oxidative carbonylation of methanol to dimethyl carbonate (DMC). J Mol Catal A: Chem 175:51–63. https://doi.org/10.1016/S1381-1169(01)00220-5

    Article  CAS  Google Scholar 

  27. Schnell H (1964) Chemistry and physics of polycarbonates. Interscience Publishers, New York

    Google Scholar 

  28. Shaikh AA, Sivaram S (1996) Organic carbonates. Chem Rev 96:951–976. https://doi.org/10.1021/cr950067i

    Article  CAS  PubMed  Google Scholar 

  29. Shaikh AG, Sivaram S, Puglisi C, Samperi F, Montaudo G (1994) Poly(arylenecarbonate)s oligomers by carbonate interchange reaction of dimethyl carbonate with bisphenol-A. Polym Bull 32:427–432. https://doi.org/10.1007/BF00587884

    Article  CAS  Google Scholar 

  30. Song HY, Park ED, Lee JS (2000) Oxidative carbonylation of phenol to diphenyl carbonate over supported palladium catalysts. J Mol Catal A: Chem 1(154):243–250. https://doi.org/10.1016/S1381-1169(99)00392-1

    Article  Google Scholar 

  31. Song J, Zhang B, Wu T, Yang G, Han B (2011) ChemInform abstract: organotin-oxomolybdate coordination polymer as catalyst for synthesis of unsymmetrical organic carbonates. Green Chem 42:922–927. https://doi.org/10.1039/C0GC00765J

    Article  Google Scholar 

  32. Su K, Li Z, Cheng B, Liao K, Shen D, Wang Y (2010) Studies on the carboxymethylation and methylation of bisphenol A with dimethyl carbonate over TiO2/SBA-15. J Mol Catal A: Chem 315:60–68. https://doi.org/10.1016/j.molcata.2009.08.027

    Article  CAS  Google Scholar 

  33. Takagi M, Miyagi H, Yoneyama T, Ohgomori Y (1998) Palladium-lead catalyzed oxidative carbonylation of phenol 1. J Mol Catal A: Chem 1(129):L1–L3. https://doi.org/10.1016/S1381-1169(97)00188-X

    Article  Google Scholar 

  34. Turska E, Wróbel AM (1970) Kinetics of polycondensation in the melt of 4,4-dihydroxy-diphenyl-2,2-propane with diphenyl carbonate. Polymer 11:415–420. https://doi.org/10.1016/0032-3861(70)90003-0

    Article  CAS  Google Scholar 

  35. Vilela C, Freire CS, Marques PA, Trindade T, Neto CP, Fardim P (2010) Synthesis and characterization of new CaCO3/cellulose nanocomposites prepared by controlled hydrolysis of dimethylcarbonate. Carbohyd Polym 79:1150–1156. https://doi.org/10.1016/j.carbpol.2009.10.056

    Article  CAS  Google Scholar 

  36. Wang S, Mei FM, Guang-Xing LI, Zhu ZG, Dai QW (2004) Direct synthesis of bisphenol A-based polycarbonate by oxidative carbonylation. Chin J Syn Chem 12:73–76

    CAS  Google Scholar 

  37. Xia R, Li Z, Cheng B, Su K (2014) The structure of organotin oxides playing a key role on the transesterification of dimethyl carbonate with hydrogenated bisphenol A. J Chem Eng 31:427–430. https://doi.org/10.1007/s11814-013-0247-9

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors are grateful for the financial support of the National and Tianjin Natural Science Foundation of China (Nos. 201676202, 21376177 and 12JCZDJC29800).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Zhenhuan Li.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 377 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Liang, Y., Su, K., Cao, L. et al. Study on the transesterification and mechanism of bisphenol A and dimethyl carbonate catalyzed by organotin oxide. Chem. Pap. 73, 2171–2182 (2019). https://doi.org/10.1007/s11696-019-00759-0

Download citation

Keywords

  • Bisphenol A
  • Dimethyl carbonate
  • Phenyl tin oxide catalysts
  • TG–MS
  • In situ DRIFT