Synthesis of 1,2-propanediamine via reductive amination of isopropanolamine over Raney Ni under the promotion of K2CO3

Abstract

Catalytic amination of isopropanolamine and ammonia to 1,2-propanediamine over Raney Ni with potassium carbonate as the additive was reported. Characterization of N2 adsorption–desorption and XRD were performed to reveal the textural and structural properties of the catalysts. With the additive of potassium carbonate, the selectivity of 1,2-propanediamine was improved, while the side generation of 2,5-dimethylpiperazine was suppressed. The catalytic reaction parameters were optimized and the yield of 1,2-propanediamine reached 80% under the optimized reaction condition.

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Scheme 2
Fig. 2
Fig. 3
Fig. 4

References

  1. Bahadori A, Nwaoha C, Clark MW (2013) Dictionary of oil, gas, and petrochemical processing. CRC, London

    Google Scholar 

  2. Barnard NC, Brown SGR, Devred F, Bakker JW, Nieuwenhuys BE, Adkins NJ (2011) A quantitative investigation of the structure of Raney-Ni catalyst material using both computer simulation and experimental measurements. J Catal 281(2):300–308. https://doi.org/10.1016/j.jcat.2011.05.010

    CAS  Article  Google Scholar 

  3. Choi S, Drese JH, Eisenberger PM, Jones CW (2011) Application of amine-tethered solid sorbents for direct CO2 capture from the ambient air. Environ Sci Technol 45(6):2420–2427. https://doi.org/10.1021/es102797w

    CAS  Article  PubMed  Google Scholar 

  4. Crossley SWM, Obradors C, Martinez RM, Shenvi RA (2016) Mn-, Fe-, and Co-catalyzed radical hydrofunctionalizations of olefins. Chem Rev 116(15):8912–9000. https://doi.org/10.1021/acs.chemrev.6b00334

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  5. Dellannay F, Damon JP, Masson J, Delmon B (1982) Quantitative xps analysis of the surface composition of raney nickel catalysts. Appl Catal 4(2):169–180. https://doi.org/10.1016/0166-9834(82)80248-0

    Article  Google Scholar 

  6. Du Y, Chen H, Chen R, Xu N (2006) Poisoning effect of some nitrogen compounds on nano-sized nickel catalysts in p-nitrophenol hydrogenation. Chem Eng J 125(1):9–14. https://doi.org/10.1016/j.cej.2006.05.019

    CAS  Article  Google Scholar 

  7. Fischer A, Maciejewski M, Burgi T, Mallat T, Baiker A (1999a) Cobalt-catalyzed amination of 1,3-propanediol: effects of catalyst promotion and use of supercritical ammonia as solvent and reactant. J Catal 183(2):373–383. https://doi.org/10.1006/jcat.1999.2408

    CAS  Article  Google Scholar 

  8. Fischer A, Mallat T, Baiker A (1999b) Synthesis of 1,4-diaminocyclohexane in supercritical ammonia. J Catal 182(2):289–291. https://doi.org/10.1006/jcat.1999.2410

    CAS  Article  Google Scholar 

  9. Fischer A, Mallat T, Baiker A (1999c) Nickel-catalyzed amination of 1,3-propanediols differently substituted at C2-position: influence of reactant structure on diamine production. J Mol Catal A Chem 149(1–2):197–204. https://doi.org/10.1016/S1381-1169(99)00174-0

    CAS  Article  Google Scholar 

  10. Fischer A, Mallat T, Baiker A (1999d) Continuous amination of propanediols in supercritical ammonia. Angew Chem Int Ed 38(3):351–354. https://doi.org/10.1002/(SICI)1521-3773(19990201)38:3%3c351:AID-ANIE351%3e3.0.CO;2-0

    CAS  Article  Google Scholar 

  11. Fouilloux P, Martin GA, Renouprez AJ, Moraweck B, Imelik B, Prettre M (1972) A study of the texture and structure of Raney nickel. J Catal 25(2):212–222. https://doi.org/10.1016/0021-9517(72)90220-5

    CAS  Article  Google Scholar 

  12. Freel J, Pieters WJM, Anderson RB (1969) The structure of Raney nickel: I. Pore structure. J Catal 14(3):247–256. https://doi.org/10.1016/0021-9517(69)90432-1

    CAS  Article  Google Scholar 

  13. Imm S, Baehn S, Zhang M, Neubert L, Neumann H, Klasovsky F, Pfeffer J, Haas T, Beller M (2011) Improved ruthenium-catalyzed amination of alcohols with ammonia: synthesis of diamines and amino esters. Angew Chem Int Ed 50:7599–7603, S7599/7591–S7599/7511. https://doi.org/10.1002/chin.201201033

  14. Jenzer G, Mallat T, Baiker A (1999) Cobalt-catalyzed amination of 1,3-cyclohexanediol and 2,4-pentanediol in supercritical ammonia. Catal Lett 61(3):111–114. https://doi.org/10.1023/A:1019045527193

    CAS  Article  Google Scholar 

  15. Knoefel ND, Rothfuss H, Willenbacher J, Barner-Kowollik C, Roesky PW (2017) Platinum(II)-crosslinked single-chain nanoparticles: an approach towards recyclable homogeneous catalysts. Angew Chem Int Ed 56(18):4950–4954. https://doi.org/10.1002/anie.201700718

    CAS  Article  Google Scholar 

  16. Lafrance M, Roggen M, Carreira EM (2012) Direct, enantioselective iridium-catalyzed allylic amination of racemic allylic alcohols. Angew Chem Int Ed 51:3470–3473, S3470/3471–S3470/3431. https://doi.org/10.1002/anie.201108287

  17. Langdon WK, Levis WW Jr, Jackson DR (1962) 2,5-Dimethylpiperazine synthesis from 1-amino-2-propanol. Ind Eng Chem 1(2):153–156

    CAS  Article  Google Scholar 

  18. Lawrence SA (2004) Amines: synthesis, properties and applications. Cambridge University, London. https://doi.org/10.1021/ja041026j

    Google Scholar 

  19. Legnani L, Bhawal BN, Morandi B (2017) Recent developments in the direct synthesis of unprotected primary amines. Synthesis 49(4):776–789. https://doi.org/10.1055/s-0036-1588371

    CAS  Article  Google Scholar 

  20. Lei H, Song Z, Tan D, Bao X, Mu X, Zong B, Min E (2001) Preparation of novel Raney-Ni catalysts and characterization by XRD, SEM and XPS. Appl Catal A Gen 214(1):69–76. https://doi.org/10.1016/S0926-860X(01)00481-1

    CAS  Article  Google Scholar 

  21. Li Y, Cheng H, Zhang C, Zhang B, Liu T, Wu Q, Su X, Lin W, Zhao F (2017) Reductive amination of 1,6-hexanediol with Ru/Al2O3 catalyst in supercritical ammonia. Sci China Chem 60(7):920–926. https://doi.org/10.1007/s11426-017-9049-5

    CAS  Article  Google Scholar 

  22. Liu Q, Zhang T, Liao Y, Cai C, Tan J, Wang T, Qiu S, He M, Ma L (2017a) Production of C5/C6 sugar alcohols by hydrolytic hydrogenation of raw lignocellulosic biomass over Zr based solid acids combined with Ru/C. ACS Sustain Chem Eng 5(7):5940–5950. https://doi.org/10.1021/acssuschemeng.7b00702

    CAS  Article  Google Scholar 

  23. Liu YX, Zhou K, Shu HM, Liu HY, Lou JT, Guo DC, Wei ZJ, Li XN (2017b) Switchable synthesis of furfurylamine and tetrahydrofurfurylamine from furfuryl alcohol over Raney Nickel. Catal Sci Technol 7(18):4129–4135

    CAS  Article  Google Scholar 

  24. Lu XH, Wei XL, Zhou D, Jiang HZ, Sun YW, Xia QH (2015) Synthesis, structure and catalytic activity of the supported Ni catalysts for highly efficient one-step hydrogenation of 1,5-dinitronaphthalene to 1,5-diaminodecahydronaphthalene. J Mol Catal A Chem 396(396):196–206. https://doi.org/10.1016/j.molcata.2014.08.030

    CAS  Article  Google Scholar 

  25. Ma L, Yan L, Lu AH, Ding YJ (2018) Effect of Re promoter on the structure and catalytic performance of Ni–Re/Al2O3 catalysts for the reductive amination of monoethanolamine. RSC Adv 8:8152–8163. https://doi.org/10.1039/C7RA12891F

    CAS  Article  Google Scholar 

  26. Martinez-Asencio A, Ramon DJ, Yus M (2011) N-Alkylation of poor nucleophilic amines and derivatives with alcohols by a hydrogen autotransfer process catalyzed by copper(II) acetate: scope and mechanistic considerations. Tetrahedron 67:3140–3149. https://doi.org/10.1016/j.tet.2011.02.075

    CAS  Article  Google Scholar 

  27. Mink G, Horváth L (1998) Hydrogenation of aniline to cyclohexylamine on NaOH-promoted or lanthana supported nickel. React Kinet Catal Lett 65(1):59–65. https://doi.org/10.1007/BF02475316

    CAS  Article  Google Scholar 

  28. Niemeier J, Engel RV, Rose M (2017) Is water a suitable solvent for the catalytic amination of alcohols? Green Chem 19(12):2839–2845. https://doi.org/10.1039/C7GC00422B

    CAS  Article  Google Scholar 

  29. Okamoto Y, Nitta Y, Imanaka T, Teranishi S (1980) Surface state, catalytic activity and selectivity of nickel catalysts in hydrogenation reactions. Part 2: surface characterization of Raney nickel and Urushibara nickel catalysts by X-ray photoelectron spectroscopy. Jchemsocfaraday Trans 76:998–1007. https://doi.org/10.1039/F19807600998

    CAS  Article  Google Scholar 

  30. Pelckmans M, Renders T, Van de Vyver S, Sels BF (2017) Bio-based amines through sustainable heterogeneous catalysis. Green Chem 19:5303–5331. https://doi.org/10.1039/C7GC02299A

    CAS  Article  Google Scholar 

  31. Pera-Titus M, Shi F (2014) Catalytic amination of biomass-based alcohols. Chemsuschem 7(3):720–722. https://doi.org/10.1002/cssc.201301095

    CAS  Article  PubMed  Google Scholar 

  32. Pingen D, Diebolt O, Vogt D (2013) Direct amination of bio-alcohols using ammonia. ChemCatChem 5(10):2905–2912. https://doi.org/10.1002/cctc.201300407

    CAS  Article  Google Scholar 

  33. Robertson SD, Anderson RB (1971) The structure of Raney nickel: IV. X-ray diffraction studies. J Catal 23(2):286–294. https://doi.org/10.1016/0021-9517(71)90051-0

    CAS  Article  Google Scholar 

  34. Rossin A, Peruzzini M (2016) Ammonia–borane and amine–borane dehydrogenation mediated by complex metal hydrides. Chem Rev 116(15):8848–8872. https://doi.org/10.1021/acs.chemrev.6b00043

    CAS  Article  Google Scholar 

  35. Roundhill DM (1992) Transition metal and enzyme catalyzed reactions involving reactions with ammonia and amines. Chem Rev 92(1):1–27. https://doi.org/10.1021/cr00009a001

    CAS  Article  Google Scholar 

  36. Subramanian N, Adeyinka A, Spivey JJ (2014) Catalytic conversion of syngas to i-butanol-synthesis routes and catalyst developments: a review. Catalysis 26:161–178. https://doi.org/10.1039/9781782620037-00161

    CAS  Article  Google Scholar 

  37. Suslov SY, Kirilina AV, Sergeev IA, Zezyulya TV, Sokolova EA, Eremina EV, Timofeev NV (2017) Complex amine-based reagents. Therm Eng 64(3):237–241. https://doi.org/10.1134/S0040601517030065

    CAS  Article  Google Scholar 

  38. Takanashi T, Nakagawa Y, Tomishige K (2014) Amination of alcohols with ammonia in water over Rh & In catalyst. Chem Lett 43(6):822–824. https://doi.org/10.1246/cl.140051

    CAS  Article  Google Scholar 

  39. Wang W, Yu Q, Zhang Q, Mei S, Yuan J, Zhao F, Yang J, Lu J (2017) Reductive amination of 2-amino-2-methyl-1-propanol and ammonia to produce 2-methyl-1,2-propanediamine over Raney Nickel Catalyst. ChemistrySelect 2(28):8818–8823. https://doi.org/10.1002/slct.201701219

    CAS  Article  Google Scholar 

  40. Yang LC, Wang YN, Zhang Y, Zhao Y (2017) Acid-assisted Ru-catalyzed enantioselective amination of 1,2-diols through borrowing hydrogen. ACS Catal 7(1):93–97. https://doi.org/10.1021/acscatal.6b02959

    CAS  Article  Google Scholar 

  41. Yue H, Guo L, Liu X, Rueping M (2017) Nickel-catalyzed synthesis of primary aryl and heteroaryl amines via C–O bond cleavage. Org Lett 19(7):1788–1791. https://doi.org/10.1021/acs.orglett.7b00556

    CAS  Article  PubMed  Google Scholar 

  42. Zhang Y, Bai G, Yan X, Li Y, Zeng T, Wang J, Wang H, Xing J, Luan D, Tang X, Chen L (2007) Amination of ethanolamine over cobalt modified H-ZSM-5 catalysts. Catal Commun 8:1102–1106. https://doi.org/10.1016/j.catcom.2006.10.018

    CAS  Article  Google Scholar 

  43. Zhao T, Guo B, Han L, Zhu N, Gao F, Li Q, Li L, Zhang J (2015) CO2 fixation into novel CO2 storage materials composed of 1,2-ethanediamine and ethylene glycol derivatives. ChemPhysChem 16(10):2106–2109. https://doi.org/10.1002/cphc.201500206

    CAS  Article  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to be supported by the Key Research and Development Projects of Shanxi Province (Nos. 2017ZDXM-GY-070, 2017ZDXM-GY-042).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Jian-Ming Yang or Jian Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yu, Q., Li, Y., Zhang, Q. et al. Synthesis of 1,2-propanediamine via reductive amination of isopropanolamine over Raney Ni under the promotion of K2CO3. Chem. Pap. 73, 2019–2026 (2019). https://doi.org/10.1007/s11696-019-00734-9

Download citation

Keywords

  • Isopropanolamine
  • 1,2-Propanediamine
  • Raney nickel
  • Potassium carbonate
  • Reductive amination