Biodegradability of blends based on aliphatic polyester and thermoplastic starch

Abstract

In this work, biodegradable aliphatic polyester blends of polycaprolactone and polylactide were melted and blended with a natural and biodegradable thermoplastic starch (TPS). The TPS employed in this study was obtained by plasticization of isolated wheat starch using glycerol as plasticizer. Morphology as well as thermal properties of the blends was investigated, and water vapor permeability as a barrier property was also monitored. The biodegradability of the biodegradable blends was performed by a composting process on laboratory scale. The composting process was conducted in an adiabatic closed reactor for 21 days and during the composting process, the temperature, pH value, % moisture and volatile matter and evolved CO2 were monitored. Biodegradation of the blends was determined by weight loss, as well as monitoring of morphological surface change. The thermophilic phase prevailed in the composting process, indicating intensive biodegradation of substrate as well as biodegradation of investigated ternary blends. Since microorganisms use starch as a carbon source, addition of TPS causes considerable acceleration of biodegradation of ternary blends due to higher water vapor permeability as a result of the hydrophilic nature of starch. The thermoplastic starch was first degraded within the blend, which was facilitated access to the microorganisms of other ingredients in the blend, encouraging the biodegradation of other components.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Abdul KHPS, Tye YY, Saurabh CK, Leh CP, Lai TK, Chong EWN, Fazita NMR, Mohd HJ, Banerjee A, Syakir MI (2017) Biodegradable polymer films from seaweed polysaccharides: a review on cellulose as a reinforcement material. eXPRESS Polym Lett 11:244–265. https://doi.org/10.3144/expresspolymlett.2017.26

    Article  CAS  Google Scholar 

  2. Ačkar Ð, Babić J, Šubarić D, Kopjar M, Miličević B (2010) Isolation of starch from two wheat varieties and their modification with epichlorohydrin. Carbohydr Polym 81:76–82. https://doi.org/10.1016/j.carbpol.2010.01.058

    Article  CAS  Google Scholar 

  3. Antosik AK, Wilpiszewska K (2018) Natural composites based on polysaccharide derivatives: preparation and physicochemical properties. Chem Pap 72:3215–3218. https://doi.org/10.1007/s11696-018-0550-3

    Article  CAS  Google Scholar 

  4. Auras R, Harte B, Selke SE (2004) An overview of polylactides as packaging materials. Macromol Biosci 4:835–864. https://doi.org/10.1002/mabi.200400043

    Article  CAS  PubMed  Google Scholar 

  5. Austrian Standards Institute (1986) Austrian standard: analytical methods and quality control for waste compost. ÖNORM S 2023, Vienna

    Google Scholar 

  6. Averous L, Moro L, Dole P, Fringant C (2000) Properties of thermoplastic blends: starch-polycaprolactone. Polymer 41:4157–4167. https://doi.org/10.1016/S0032-3861(99)00636-9

    Article  CAS  Google Scholar 

  7. Bota J, Lj Kratofil Krehula, Katančić Z, Brozović M, Hrnjak-Murgić Z (2017) Surface characteristics and enhancement of water vapor properties of paperboard coated with polycaprolactone nanocomposites. J Adhes Sci Technol 31:1–21. https://doi.org/10.1080/01694243.2016.1218313

    Article  CAS  Google Scholar 

  8. Briški F, Kopčić N, Ćosić I, Kučić D, Vuković M (2012) Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem Pap 66:1103–1110. https://doi.org/10.2478/s11696-012-0234-3

    CAS  Article  Google Scholar 

  9. Brody AL (2005) Commercial uses of active food packaging and modified atmosphere packaging systems. In: Han JH (ed) Innovations in food packaging. Elsevier Science, Oxford, pp 457–474

    Google Scholar 

  10. Broz ME, Vander HDL, Washburn NR (2003) Structure and mechanical properties of poly(d, l-lactic acid)/poly(ϵ-caprolactone) blends. Biomaterials 24:4181–4190. https://doi.org/10.1016/S0142-9612(03)00314-4

    Article  CAS  PubMed  Google Scholar 

  11. Carbonell-Verdu Ferri JM, Dominici F, Boronat T, Sanchez-Nacher L, Balart R, Torre L (2018) Manufacturing and compatibilization of PLA/PBAT binary blends by cottonseed oil-based derivatives. eXPRESS Polym Lett 12:808–823. https://doi.org/10.3144/expresspolymlett.2018.69

    Article  CAS  Google Scholar 

  12. Carmona VB, Correˆ AC, Marconcini JM, Capparelli Mattoso LH (2015) Properties of a biodegradable ternary blend of thermoplastic starch (TPS), poly(e-caprolactone) (PCL) and poly(lactic acid) (PLA). J Polym Environ 23:83–89. https://doi.org/10.1007/s10924-014-0666-7

    Article  CAS  Google Scholar 

  13. Carvalho AJF, Zambon MD, Curvelo AAS, Gandini A (2003) Size exclusion chromatography characterization of thermoplastic starch composites 1. Influence of plasticizer and fibre content. Polym Degrad Stab 79:133–138. https://doi.org/10.1016/S0141-3910(02)00265-3

    Article  CAS  Google Scholar 

  14. Chen L, Qiu X, Xie Z, Hong Z, Sun J, Chen X, Jing X (2006) Poly(l-lactide)/starch blends compatibilized with poly(l-lactide)-g-starch copolymer. Carbohydr Polym 65:75–80. https://doi.org/10.1016/j.carbpol.2005.12.029

    Article  CAS  Google Scholar 

  15. Crescenzi V, ManziniG Calzolari G, Borri C (1972) Thermodynamics of fusion of poly-β-propiolactone and poly-ϵ-caprolactone. Comparative analysis of the melting of aliphatic polylactone and polyester chains. Eur Polym J 8:449–463. https://doi.org/10.1016/0014-3057(72)90109-7

    Article  CAS  Google Scholar 

  16. Curvelo AAS, Carvalho AJF, Agnelli JAM (2001) Thermoplastic starch-cellulosic fibers composites: preliminary results. Carbohydr Polym 45:183–188. https://doi.org/10.1016/S0144-8617(00)00314-3

    Article  CAS  Google Scholar 

  17. Davoodi S, Oliaei E, Davachi SM, Hejazi I, Seyfi J, Be S, Ebrahimi H (2016) Preparation and characterization of interface-modified PLA/starch/PCL ternary blends using PLLA/triclosan antibacterial nanoparticles for medical applications. RSC Adv. 6:39870–39882. https://doi.org/10.1039/c6ra07667j

    Article  CAS  Google Scholar 

  18. Feng F, Ye L (2011) Morphologies and mechanical properties of polylactide/thermoplastic polyurethane elastomer blends. J Appl Polym Sci 119:2778–2783. https://doi.org/10.1002/app.32863

    Article  CAS  Google Scholar 

  19. Ferreira ARV, Alves VD, Coelhoso IM (2016) Polysaccharide-based membranes in food packaging applications. Membranes (Basel) 6:22–39. https://doi.org/10.3390/membranes6020022

    Article  CAS  Google Scholar 

  20. Ferri JM, Fenollar O, Jorda-Vilaplana A, García-Sanoguera D, Balart R (2016) Effect of miscibility on mechanical and thermal properties of poly(lactic acid)/polycaprolactone blends. Polym Int 65:453–463. https://doi.org/10.1002/pi.5079

    Article  CAS  Google Scholar 

  21. Fortelny I, Slouf M, Sikora A, Hlavata D, Hasova V, Mikesova J, Jacob C (2006) The effect of the architecture and concentration of styrene-butadiene compatibilizers on the morphology of polystyrene/low-density polyethylene blends. J Appl Polym Sci 100:2803–2816. https://doi.org/10.1002/app.23731

    Article  CAS  Google Scholar 

  22. Fox PG, Fuller KNG (1971) Thermal mechanism for craze formation in brittle amorphous polymers. Nat Phys Sci 234:13–14. https://doi.org/10.1038/physci234013a0

    Article  CAS  Google Scholar 

  23. Garcia-Campo MJ, Quiles-Carrillo L, Masia J, ReigPérez MJ, Montanes N, Balart R (2017) Environmentally friendly compatibilizers from soybean oil for ternary blends of poly(lactic acid)-PLA, poly(epsilon-caprolactone)-PCL and poly(3-hydroxybutyrate)-PHB. Materials 10:1339/1–1339/19. https://doi.org/10.3390/ma10111339

    Article  CAS  Google Scholar 

  24. Ghasemlou M, Aliheidari N, Fahmi R, Shojaee-Aliabadi S, Keshavarz B, Cran MJ, Khaksar R (2013) Physical, mechanical and barrier properties of corn starch films incorporated with plant essential oils. Carbohydr Polym 98:1117–1126. https://doi.org/10.1016/j.carbpol.2013.07.026

    Article  CAS  PubMed  Google Scholar 

  25. Gumede TP, Luyt AS, Müller AJ (2018) Review on PCL, PBS, and PCL/PBS blends containing carbon nanotubes. eXPRESS Polym Lett 12:505–529. https://doi.org/10.3144/expresspolymlett.2018.43

    Article  CAS  Google Scholar 

  26. Hosseini SF, Rezaei M, Zandi M, Ghavi FF (2013) Preparation and functional properties of fish gelatin–chitosan blend edible films. Food Chem 136:1490–1495. https://doi.org/10.1016/j.foodchem.2012.09.081

    Article  CAS  Google Scholar 

  27. Huang SJ (2005) Poly(lactic acid) and copolyesters. In: Bastioli C (ed) Handbook of biodegradable polymers. Rapra Technology Litmited, Shawbury, pp 287–297

    Google Scholar 

  28. Huang M, Yu J, Ma X (2005) Ethanolamine as a novel plasticiser for thermoplastic starch. Polym Degrad Stab 90:501–507. https://doi.org/10.1016/j.polymdegradstab.2005.04.005

    Article  CAS  Google Scholar 

  29. Jayasekara R, Harding I, Bowater I, Lonergan G (2005) Biodegradability of a selected range of polymers and polymer blends and standard methods for assessment of biodegradation. J Polym Environ 13:231–251. https://doi.org/10.1007/s10924-005-4758-2

    Article  CAS  Google Scholar 

  30. Jiang W, Qiao X, Sun K (2006) Mechanical and thermal properties of thermoplastic acetylated starch/poly(ethylene-co-vinyl alcohol) blends. Carbohydr Polym 65:139–143. https://doi.org/10.1016/j.carbpol.2005.12.038

    Article  CAS  Google Scholar 

  31. Kolthoff IM, Sandel EB (1951) Inorganic quantitative analysis. Školska knjiga, Zagreb, pp 347–352

    Google Scholar 

  32. Kostakova EK, Meszaros L, Maskova G, Blazkova L, Turcsan T, Lukas D (2017) Crystallinity of electrospun and centrifugal spun polycaprolactone fibers: a comparative study. J Nanomater. https://doi.org/10.1155/2017/8952390

    Article  Google Scholar 

  33. Kučić D, Kopčić N, Briški F (2013) Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chem Pap 67:1172–1180. https://doi.org/10.2478/s11696-013-0322-z

    CAS  Article  Google Scholar 

  34. Labet M, Thielemans W (2009) Synthesis of polycaprolactone: a review. Chem Soc Rev 38:3484–3504. https://doi.org/10.1039/b820162p

    Article  CAS  Google Scholar 

  35. Lu X, Zhao J, Yang X, Xiao P (2017) Morphology and properties of biodegradable poly (lactic acid)/poly (butylene adipate-co-terephthalate) blends with different viscosity ratio. Polym Test 60:58–67. https://doi.org/10.1016/j.polymertesting.2017.03.008

    Article  CAS  Google Scholar 

  36. Mittal V, Akhtar T, Matsko N (2015) Mechanical, thermal, rheological and morphological properties of binary and ternary blends of PLA, TPS and PCL. Macromol Mater Eng 300:423–435. https://doi.org/10.1002/mame.201400332

    Article  CAS  Google Scholar 

  37. Musioł M, Sikorska W, Janeczek H, Wałach W, Hercog A, Johnston B, Rydz J, Rydz J (2018) (Bio)degradable polymeric materials for a sustainable future—part 1. Organic recycling of PLA/PBAT blends in the form of prototype packages with long shelf-life. Waste Manag 77:447–454. https://doi.org/10.1016/j.wasman.2018.04.030

    Article  CAS  PubMed  Google Scholar 

  38. Nair LS, Laurencin CT (2007) Biodegradable polymers as biomaterials. Prog Polym Sci 32:762–798. https://doi.org/10.1016/j.progpolymsci.2007.05.017

    Article  CAS  Google Scholar 

  39. Neto BAM, Fornari Junior CCM, da Silva EGP, Franco M, Reis NS, Bonomo RCF, de Almeida PF, Pontes KV (2017) Biodegradable thermoplastic starch of peach palm (Bactris gasipaes Kunth) fruit: production and characterisation. Int J Food Prop 20:S2429–S2440. https://doi.org/10.1080/10942912.2017.1372472

    Article  CAS  Google Scholar 

  40. Ortega-Toro R, Morey I, Talens P, Chiralt A (2015) Active bilayer films of thermoplastic starch and polycaprolactone obtained by compression molding. Carbohydr Polym 127:282–290. https://doi.org/10.1016/j.carbpol.2015.03.080

    Article  CAS  PubMed  Google Scholar 

  41. Palsikowski PA, Kuchnier CN, Pinheiro IF, Morales AR (2018) Biodegradation in soil of PLA/PBAT blends compatibilized with chain extender. J Polym Environ 26:330–334

    Article  CAS  Google Scholar 

  42. Perotti GF, Kijchavengkul T, Auras RA, Constantino VRL (2017) Nanocomposites based on cassava starch and chitosan. Modified clay: physico-mechanical properties and biodegradability in simulated compost soil. J Braz Chem Soc 28:649–658. https://doi.org/10.21577/0103-5053.20160213

    CAS  Article  Google Scholar 

  43. Plichta A, Lisowska P, Kundys A, Zychewicz A, Debowski M, Florjanczyk Z (2014) Chemical recycling of poly(lactic acid) via controlled degradation with protic (macro)molecules. Polym Degrad Stab 108:288–296. https://doi.org/10.1016/j.polymdegradstab.2014.03.006

    Article  CAS  Google Scholar 

  44. Rhim J-W, Lee JH, Ng Perry KW (2007) Mechanical and barrier of biodegradable soy protein isolate-based films coated with polylactic acid. LWT Food Sci Technol 40:232–238. https://doi.org/10.1016/j.lwt.2005.10.002

    Article  CAS  Google Scholar 

  45. Sarazin P, Li G, Orts WJ, Favis BD (2008) Binary and ternary blends of polylactide, polycaprolactone and thermoplastic starch. Polymer 49:599–609. https://doi.org/10.1016/j.polymer.2007.11.029

    Article  CAS  Google Scholar 

  46. Selke SE (2000) Plastics recycling and biodegradable plastics. In: Harper CA (ed) Modern plastics handbook. McGraw-Hill, New York, pp 12.1–12.108

    Google Scholar 

  47. Selke SE, Culter JD, Hernandez RJ (2004) Plastics packaging: properties, processing, applications, and regulations. Hanser, Cincinnati, pp 448–467

    Google Scholar 

  48. Shogren R (1997) Water vapor permeability of biodegradable polymers. J Environ Polym Degrad 5:91–95. https://doi.org/10.1007/BF02763592

    Article  CAS  Google Scholar 

  49. Siracusa V, Rocculi P, Romani S, Rosa MD (2008) Biodegradable polymers for food packaging: a review. Trends Food Sci Technol 19:634–643. https://doi.org/10.1016/j.tifs.2008.07.003

    Article  CAS  Google Scholar 

  50. Slouf M, Kolarik J, Fambri L (2004) Phase morphology of PP/COC blends. J Appl Polym Sci 91:253–259. https://doi.org/10.1002/app.13253

    Article  CAS  Google Scholar 

  51. Sorrentino A, Gorrasi G, Vittoria V (2007) Potential perspectives of bio-nanocomposites for food packaging applications. Trends Food Sci Technol 18:84–95. https://doi.org/10.1016/j.tifs.2006.09.004

    Article  CAS  Google Scholar 

  52. Su J, Chen L, Li L (2012) Characterization of polycaprolactone and starch blends for potential application within the biomaterials field. Afr J Biotechnol 11:694–701. https://doi.org/10.5897/AJB11.251

    CAS  Article  Google Scholar 

  53. Sun H, Xiao A, Yu B, Bhat G, Zhu F (2017) Effect of PCL and compatibilizer on the tensile and barrier properties of PLA/PCL films. Polymer (Korea) 4:181–188. https://doi.org/10.7317/pk.2017.41.2.181

    Article  CAS  Google Scholar 

  54. Taggort P (2004) Starch as an ingredient: manufacture and applications. In: Eliasson AC (ed) Starch in food: structure, function and applications. Woodhead Publishing Limited, Cambridge, pp 363–392

    Google Scholar 

  55. Thakur VK, Thakur MK (2016) Handbook of sustainable polymers: processing and applications. Pan Stanford Publishing, Singapore

    Google Scholar 

  56. Tumwesigye KS, Oliveira JC, Sousa-Gallagher MJ (2016) New sustainable approach to reduce cassava borne environmental waste and develop biodegradable materials for food packaging applications. Food Packag Shelf Life 7:8–19. https://doi.org/10.1016/j.fpsl.2015.12.001

    Article  Google Scholar 

  57. Vertuccio L, Gorrasi G, Sorrentino A, Vittoria V (2009) Nano clay reinforced PCL/starch blends obtained by high energy ball milling. Carbohydr Polym 75:172–179. https://doi.org/10.1016/j.carbpol.2008.07.020

    Article  CAS  Google Scholar 

  58. Yu L, Dean K, Li L (2006) Polymer blends and composites from renewable resources. Prog Polym Sci 31:576–602. https://doi.org/10.1016/j.progpolymsci.2006.03.002

    Article  CAS  Google Scholar 

  59. Zembouai I, Kaci M, Bruzaud S, Benhamida A, Corre Y-M, Grohens Y (2013) A study of morphological, thermal, rheological and barrier properties of poly(3-hydroxybutyrate-co-3-hydroxyvalerate)/polylactide blends prepared by melt mixing. Polym Test 32:842–851. https://doi.org/10.1016/j.polymertesting.2013.04.004

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by the University of Zagreb, Croatia (Grant no. 110001/2013). Electron microscopy at the Institute of Macromolecular Chemistry was supported by projects TE01020118 (Technology Agency of the CR) and POLYMAT LO1507 (Ministry of Education, Youth and Sports of the CR, program NPU I).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vesna Ocelić Bulatović.

Ethics declarations

Conflict of interest

On behalf of all authors, the corresponding author states that there is no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 678 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulatović, V.O., Grgić, D.K., Slouf, M. et al. Biodegradability of blends based on aliphatic polyester and thermoplastic starch. Chem. Pap. 73, 1121–1134 (2019). https://doi.org/10.1007/s11696-018-0663-8

Download citation

Keywords

  • Aliphatic polyester
  • Thermoplastic starch
  • Biodegradation
  • Composting process