Skip to main content

A comprehensive study about Hibiscus sabdariffa leaves: antioxidant activity, polyphenol profile and macro- and micro-element content

Abstract

Hibiscus sabdariffa leaves are generally consumed by people in cold drinks and herbal tea. The purpose of this study is to examine in terms of antioxidant activity, polyphenol profile and macro- and micro-element content of H. sabdariffa leaves. Firstly, antioxidant activity studies were carried out by applying antioxidant activity assays to different extracts of the plant leaves. It has been observed that the antioxidant activity results vary depending on the extraction solvent and that the result obtained for one extract in some tests could not be obtained for the same extract in the other tests when solvents are changed. Secondly, the polyphenol profile of this plant was identified with a high-performance liquid chromatography–diode array detector (HPLC–DAD). For this purpose, thirteen polyphenols were examined in leaves of this plant, but only caffeic acid, chlorogenic acid, ellagic acid, p-coumaric acid and quercetin were detected among the studied polyphenols. Finally, macro-element including calcium (Ca), potassium (K), magnesium (Mg), sodium (Na) and micro-element including copper (Cu), iron (Fe), zinc (Zn) analysis was carried out using flame atomic absorption spectrometry (FAAS).

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3

References

  • Ali BH, Al Wabel N, Blunden G (2005) Phytochemical, pharmacological and toxicological aspects of Hibiscus sabdariffa L.: a review. Phytother Res 19(5):369–375

    Article  CAS  PubMed  Google Scholar 

  • Aoshima H, Hirata S, Ayabe S (2007) Antioxidative and anti-hydrogen peroxide activities of various herbal teas. Food Chem 103(2):617–622

    Article  CAS  Google Scholar 

  • Barhe TA, Tchouya GRF (2016) Comparative study of the anti-oxidant activity of the total polyphenols extracted from Hibiscus Sabdariffa L., Glycine max L. Merr, yellow tea and red wine through reaction with DPPH free radicals. Arabian J Chem 9(1):1–8

    Article  CAS  Google Scholar 

  • Beckman KB, Ames BN (1997) Oxidants, antioxidants, and aging. In: Scandalios JG (ed) Oxidative stress and the molecular biology of antioxidant defense. Cold Spring Harbor Lab Press, New York, pp 201–246

    Google Scholar 

  • Borras-Linares I, Herranz-Lopez M, Barrajon-Catalan E, Arraez-Roman D, Gonzalez-Alvarez I, Bermejo M, Fernandez-Gutierrez A, Micol V, Segura-Carretero A (2015a) Permeability study of polyphenols derived from a phenolic-enriched Hibiscus sabdariffa extract by UHPLC-ESI-UHR-Qq-TOF-MS. Int J Mol Sci 16(8):18396–18411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Borras-Linares I, Fernandez-Arroyo S, Arraez-Roman D, Palmeros-Suarez PA, Del Val-Diaz R, Andrade-Gonzales I, Fernandez-Gutierrez A, Gomez-Leyva JF, Segura-Carretero A (2015b) Characterization of phenolic compounds, anthocyanidin, antioxidant and antimicrobial activity of 25 varieties of Mexican Roselle (Hibiscus sabdariffa). Ind Crops Prod 69:385–394

    Article  CAS  Google Scholar 

  • Brand-Williams W, Cuvelier ME, Berset C (1995) Use of a free radical method to evaluate antioxidant activity. Food Sci Technol-Lebensmittel-Wissenschaft & Technol 28:25–30

    Article  CAS  Google Scholar 

  • Chen JH, Wang CJ, Wang CP, Sheu JY, Lin CL, Lin HH (2013) Hibiscus sabdariffa leaf polyphenolic extract inhibits LDL oxidation and foam cell formation involving up-regulation of LXRα/ABCA1 pathway. Food Chem 141(1):397–406

    Article  CAS  PubMed  Google Scholar 

  • Cid-Ortega S, Guerrero-Beltran JA (2015) Roselle calyces (Hibiscus sabdariffa), an alternative to the food and beverages industries: a review. J Food Sci Technol 52(11):6859–6869

    Article  CAS  Google Scholar 

  • Da Costa Rocha I, Bonnlaender B, Sievers H, Pischel I, Heinrich M (2014) Hibiscus sabdariffa L. a phytochemical and pharmacological review. Food Chem 165:424–443

    Article  CAS  Google Scholar 

  • Fennema OR (2000) Food chemistry. Marcel Dekker, New York

    Google Scholar 

  • Hanasaki Y, Ogawa S, Fukui S (1994) The correlation between active oxygens scavenging and antioxidative effects of flavonoids. Free Rad Bio Med 16(6):845–850

    Article  CAS  Google Scholar 

  • Kang NJ, Shin SH, Lee HJ, Lee KW (2011) Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Ther 130(3):310–324

    Article  CAS  PubMed  Google Scholar 

  • Maiga A, Diallo D, Bye R, Paulsen BS (2005) Determination of some toxic and essential metal ions in medicinal and edible plants from Mali. J Agric Food Chem 53(6):2316–2321

    Article  CAS  PubMed  Google Scholar 

  • Malik J, Frankova A, Drabek O, Szakova J, Ash C, Kokoska L (2013) Aluminium and other elements in selected herbal tea plant species and their infusions. Food Chem 139(1–4):728–734

    Article  CAS  PubMed  Google Scholar 

  • Manach C, Scalbert A, Morand C, Remesy C, Jimenez L (2004) Polyphenols: food sources and bioavailability. Am J Clin Nutr 79(5):727–747

    Article  CAS  PubMed  Google Scholar 

  • Mariod AA, Ibrahim RM, Ismail M, Ismail N (2012) Antioxidant activity of phenolic extracts from kenaf (Hibiscus Cannabinus) seedcake. Grasas Aceites 63(2):167–174

    Article  CAS  Google Scholar 

  • Martinez-Ballesta MC, Dominguez-Perles R, Moreno DA, Muries B, Alcaraz-Lopez C, Bastias E, Garcia-Viguera C, Carvajal M (2010) Minerals in plant food: effect of agricultural practices and role in human health. A review. Agron Sustain Dev 30:295–309

    Article  CAS  Google Scholar 

  • Mihaljev Z, Zivkov-Balos M, Cupic Z, Jaksic S (2014) Levels of some microelements and essential heavy metals in herbal teas in Serbia. Acta Pol Pharm 71(3):385–391

    PubMed  Google Scholar 

  • Oyaizu M (1988) Antioxidative activities of browning products of glucosamine actionated by organic solvent and thin layer chromatography. Nippon Shokuhin Kogyo Gakkasishi 35:771–775

    Article  CAS  Google Scholar 

  • Pelus E, Arnaud J, Ducros V, Faure H, Favier A, Roussel AM (2009) Trace element (Cu, Zn, Fe, Mn, Se) intakes of a group of French men using the duplicate diet technique. Inter J Food Sci Nutr 45:63–70

    Article  Google Scholar 

  • Re R, Pellegrini N, Proteggente A, Pannala A, Yang M, Rice-Evans C (1999) Antioxidant activity applying an improved ABTS radical cation decolorization assay. Free Rad Biol Med 26(9–10):1231–1237

    Article  CAS  PubMed  Google Scholar 

  • Robards K, Antolovich M (1997) Analytical chemistry of fruit bioflavonoids a review. Analyst 122:11R–34R

    Article  CAS  Google Scholar 

  • Saletovic M, Hodzic Z, Banjanin B, Kesic A (2011) Bioavailability of microelements (Cu, Zn, Mn) in medicinal plants. HealthMED J 5(5):1358–1364

    Google Scholar 

  • Singleton VL, Rossi JA (1965) Colorimetry of total phenolics with phosphomolybdic–phosphotungstic acid reagents. Am J Enol Vitic 16:144–158

    CAS  Google Scholar 

  • Soleas GJ, Diamandis EP, Goldberg DM (1997) Wine as a biological fluid: history, production, and role in disease prevention. J Clin Lab Anal 11:287–313

    Article  CAS  PubMed  Google Scholar 

  • Villani T, Juliani HR, Simon JE, Wu QL (2013) Hibiscus sabdariffa: Phytochemistry, quality control, and health properties. African Natural plant products, vol II: discoveries and challenges in chemistry, health, and nutrition, ACS Symposium Series 1127 (Chapter 14), pp 209–230

  • Wanasundara UN, Amarowicz R, Shahidi F (1995) Partial characterization of natural antioxidants in canola meal. Food Res Inter 28(6):525–530

    Article  CAS  Google Scholar 

  • Wang J, Cao XS, Jiang H, Qi YD, Chin KL, Yue YD (2014) Antioxidant activity of leaf extracts from different Hibiscus sabdariffa accessions and simultaneous determination five major antioxidant compounds by LC-Q-TOF-MS. Molecules 19(12):21226–21238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wrobel K, Wrobel K, Urbina EMC (2000) Determination of total aluminum, chromium, copper, iron, manganese, and nickel and their fractions leached to the infusions of black tea, green tea, Hibiscus sabdariffa, and ilex paraguariensis (Mate) by ETA-AAS. Bio Trace Element Res 78(1–3):271–280

    Article  CAS  Google Scholar 

  • Xiong LN, Yang JJ, Jiang YR, Lu BY, Hu YZ, Zhou F, Mao SQ, Shen CX (2014) Phenolic compounds and antioxidant capacities of 10 common edible flowers from China. J Food Sci 79(4):C517–C525

    Article  CAS  PubMed  Google Scholar 

  • Zhen J, Villani TS, Guo Y, Qi YD, Chin K, Pan MH, Ho CT, Simon JE, Wu QL (2016) Phytochemistry, antioxidant capacity, total phenolic content and anti-inflammatory activity of Hibiscus sabdariffa leaves. Food Chem 190:673–680

    Article  CAS  PubMed  Google Scholar 

  • Zhishen J, Mengcheng T, Jianming W (1999) The determination of flavonoid content in mulberry and their scavenging effects on superoxide radicals. Food Chem 64(4):555–559

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nagihan M. Karaaslan.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Karaaslan, N.M. A comprehensive study about Hibiscus sabdariffa leaves: antioxidant activity, polyphenol profile and macro- and micro-element content. Chem. Pap. 73, 791–799 (2019). https://doi.org/10.1007/s11696-018-0629-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-018-0629-x

Keywords

  • Hibiscus sabdariffa
  • Antioxidant activity
  • Polyphenol profile
  • Macro- and micro-element content