Theoretical study of crystalline network and optoelectronic properties of erlotinib hydrochloride molecule: non-covalent interactions consideration

Abstract

In this work, for the first time, we have investigated the structural and optoelectronic properties of Erlotinib hydrochloride (C22H24N3O4+·Cl) (1) anticancer drug using DFT calculations by the full-potential (linearized) augmented plane wave (FP(L)APW) calculations and hybrid density functional B3LYP. The monomeric ion of 1 participates in some 2-D fragments through different non-covalent interactions, including H-bonds (HBs) and π-stacking. Dispersion-corrected density functional theory calculations (DFT-D) have been used for obtaining the corrected values of the calculated binding energy of non-covalent interactions of the respective network of 1. Delocalization indices are the criterions for bond polarity by measuring the share of electron pair between two atoms. The results show that involved HBs can be classified from moderate to strong. The results show that HBs, especially non-covalent C–H···O interactions, govern the network formation along the a and c axes. Density of state results by the FP(L)APW show that this complex has a wide band gap (2.28 eV). The top of the valence band is originating mainly from Cl-, N- and O-p states and the bottom of the conduction band is composed of C- and N-p states. These states play a key role in optical transitions of C22H24N3O4+·Cl anticancer drug. Optical results show that this molecule is birefringent.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. Aznar E, Marcos MD, Martinez-Manez R, Sancenon F, Soto J, Amoros P, Guillem C (2009) pH- and photo-switched release of guest molecules from mesoporous silica supports. J Am Chem Soc 131:6833–6843. https://doi.org/10.1021/ja810011p

    Article  CAS  PubMed  Google Scholar 

  2. Bader RWF (1990) Atoms in molecules: a quantum theory. Oxford University Press, Oxford

    Google Scholar 

  3. Barghi L, Aghanejad A, Valizadeh H, Barar J, Asgari D (2012) Modified Synthesis of Erlotinib Hydrochloride. Adv Pharm Bull 2:119–122. https://doi.org/10.5681/apb.2012.017

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  4. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic behavior. Phys Rev A 38(6):3098–3100. https://doi.org/10.1103/PhysRevA.38.3098

    Article  CAS  Google Scholar 

  5. Becke AD (1993) Density-functional thermochemistry. III. The role of exact exchange. J Chem Phys 98(7):5648–5652. https://doi.org/10.1063/1.464913

    Article  CAS  Google Scholar 

  6. Boys SF, Bernardi F (1970) The calculation of small molecular interactions by the differences of separate total energies. Some procedures with reduced errors. Mol Phys 19(4):553–566. https://doi.org/10.1080/0026897700010156

    Article  CAS  Google Scholar 

  7. Chahkandi M (2016) Theoretical investigation of non-covalent interactions and spectroscopic properties of a new mixed-ligand Co(II) complex. J Mol Struct 1111:193–200. https://doi.org/10.1016/j.molstruc.2016.01.065

    Article  CAS  Google Scholar 

  8. Chahkandi M, Rahnamaye Aliabad HA (2018) Role of hydrogen bonding in establishment of a crystalline network of Cu (II) complex with hydrazone-derived ligand: optoelectronic studies. Chem Pap 72:1287–1297. https://doi.org/10.1007/s11696-017-0360-z

    Article  CAS  Google Scholar 

  9. Chahkandi M, Bhatti MH, Yunus U, Shaheen S, Nadeem M, Nawaz Tahir M (2017) Synthesis and comprehensive structural studies of a novel amide based carboxylic acid derivative: non-covalent interactions. J Mol Struct 1133:499–509. https://doi.org/10.1016/j.molstruc.2016.12.045

    Article  CAS  Google Scholar 

  10. Chahkandi M, Bhatti MH, Yunus U, Nadeem M, Zakaria M, Nawaz Tahir M (2018) Novel cocrystal of N-phthaloyl-b-alanine with 2,2ebipyridyl: synthesis, computational and free radical scavenging activity studies. J Mol Struct 1152:1–10. https://doi.org/10.1016/j.molstruc.2017.09.046

    Article  CAS  Google Scholar 

  11. Chattopadhyay B, Mukherjee AK, Narendra N, Hemantha HP, Sureshbabu VV, Helliwell M, Mukherjee M (2010) Supramolecular architectures in 5, 50-substituted hydantoins: crystal structures and Hirshfeld surface analyses. Crys Growth Des 10:4476. https://doi.org/10.1021/cg100706n

    Article  CAS  Google Scholar 

  12. Desiraju GR (1995) Supramolecular synthons in crystal engineering—a new organic synthesis. Angew Chem Int Ed Engl 34:2311. https://doi.org/10.1002/anie.199523111

    Article  CAS  Google Scholar 

  13. Dickerson EB, Dreaden EC, Huang XH, El-Sayed IH, Chu HH, Pushpanketh S, McDonald JF, El-Sayed MA (2008) Gold nanorod assisted near-infrared plasmonic photothermal therapy (PPTT) of squamous cell carcinoma in mice. Cancer Lett. 269:57–66. https://doi.org/10.1016/j.canlet.2008.04.026

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Eshtiagh-Hosseini H, Chahkandi M, Housaindokht MR, Mirzaei M (2013) Bromide oxidation mechanism by vanadium bromoperoxidase functional models with new tripodal amine ligands: a comprehensive theoretical calculations study. Polyhedron 60:93–101. https://doi.org/10.1016/j.poly.2013.04.058

    Article  CAS  Google Scholar 

  15. Fang W, Yang J, Gong J, Zheng N (2012) Photo- and pH-triggered release of anticancer drugs from mesoporous silica-coated Pd@Ag nanoparticles. Adv Funct Mater 22:842–848. https://doi.org/10.1002/adfm.201101960

    Article  CAS  Google Scholar 

  16. Fradera X, Austen MA, Bader RFW (1999) The lewis model and beyond. J Phys Chem A 103(2):304–314. https://doi.org/10.1021/jp983362q

    Article  CAS  Google Scholar 

  17. Frisch MJ, et al. (2009). G09|Gaussian.com. Retrieved September 30, 2017, from http://gaussian.com/glossary/g09/

  18. Hawrysz DJ, Sevick-Muraca EM (2000) Developments toward diagnostic breast cancer imaging using near-infrared optical measurements and fluorescent contrast agents. Neoplasia 2:388–417. https://doi.org/10.1038/sj.neo.7900118

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Hosseini SM, Rahnamaye Aliabad HA, Kompany A (2005) First principle study of optical properties of pure α-Al2O3 and La aluminates. Eur phys J B. 43:439–444. https://doi.org/10.1140/epjb/e2005-00076-8

    Article  CAS  Google Scholar 

  20. Jurecka P, Cerny J, Hobza P, Salahub DR (2007) Density functional theory augmented with an empirical dispersion term. Interaction energies and geometries of 80 noncovalent complexes compared with ab initio quantum mechanics calculations. J Comput Chem 28:555. https://doi.org/10.1002/jcc.20570

    Article  CAS  PubMed  Google Scholar 

  21. Lee C, Yang W, Parr RG (1988) Development of the Colle–Salvetti correlation-energy formula into a functional of the electron density. Phys Rev B 37(2):785–789. https://doi.org/10.1103/PhysRevB.37.785

    Article  CAS  Google Scholar 

  22. Lin QN, Huang Q, Li CY, Liu ZZ, Li FY, Zhu LY (2010) Anticancer drug release from a mesoporous silica based nanophotocage regulated by either a one- or two-photon process. J Am Chem Soc. 132:10645–10647. https://doi.org/10.1021/ja103415t

    Article  CAS  PubMed  Google Scholar 

  23. Mirzaei M, Eshtiagh-Hosseini H, Chahkandi M, Alfi N, Shokrollahi A, Shokrollahi N, Janiak A (2012) Comprehensive studies of non-covalent interactions within four new Cu(ii) supramolecules. Cryst Eng Comm 14(24):8468. https://doi.org/10.1039/c2ce26442k

    Article  CAS  Google Scholar 

  24. Moyer JD, Barbacci EG, Iwata KK, Arnold L, Boman B, Cunningham A, Diorio C, Doty J, Morin MJ, Moyer MP, Neveu M, Pollack VA, Pustilnik LR, Reynolds MM, Sloan D, Theleman A, Miller P (1997) Induction of apotosis and cell cycle arrest by CP-358,774, an inhibitor of epidermal growth factor receptor tyrosine kinase. Cancer Res. 57:4838–4848

    CAS  PubMed  Google Scholar 

  25. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. https://doi.org/10.1103/physrevlett.77.3865

    Article  CAS  Google Scholar 

  26. Petersen M, Wagner F, Hufnagel L, Scheffler M, Blaha P, Schwarz K (2000) Improving the efficiency of FP-LAPW calculations. Comput Phys Commun 126(3):294–309. https://doi.org/10.1016/S0010-4655(99)00495-6

    Article  CAS  Google Scholar 

  27. Rahnamaye Aliabad HA (2015) Investigation of optoelectronic properties of pure and Co substituted a-Al2O3 by Hubbard and modified Becke-Johnson exchange potentials. Chin Phys B 24:097102. https://doi.org/10.1088/1674-1056/24/9/097102

    Article  CAS  Google Scholar 

  28. Rahnamaye Aliabad HA, Ahmed I (2012) Optoelectronic properties of LixAxNbO3 (A = Na, K, Rb, Cs, Fr) crystals. Physica B: Condensed Matter 407:368–377. https://doi.org/10.1016/j.physb.2011.11.001

    Article  CAS  Google Scholar 

  29. Rahnamaye Aliabad HA, Chahkandi M (2017a) Optoelectronic and structural studies of a Ni(II) complex including bicyclic guanidine ligands: FPLAPW and B3LYP–DFT approaches. Computational and Theoretical Chemistry 1122:53–61. https://doi.org/10.1016/j.comptc.2017.11.005

    Article  CAS  Google Scholar 

  30. Rahnamaye Aliabad HA, Chahkandi M (2017b) Comprehensive SPHYB and B3LYP–DFT studies of two types of Ferrocene. Zeitschrift für anorganische und allgemeine Chemie. 643:420–431. https://doi.org/10.1002/zaac.201600423

    Article  CAS  Google Scholar 

  31. Rahnamaye Aliabad HA, Yalcin BG (2015) Effects of IIIB transition metals on optoelectronic and magnetic properties of HoMnO3: A first principles study. Chin. Phys. B 24:117102. https://doi.org/10.1088/1674-1056/24/11/117102

    Article  CAS  Google Scholar 

  32. Rahnamaye Aliabad HA, Yalcin BG (2017) Optoelectronic and thermoelectric response of Ca5Al2Sb6 to shift of band gap from direct to indirect. J Mater Sci: Mater Electron 28:14954–14964. https://doi.org/10.1007/s10854-017-7368-6

    CAS  Article  Google Scholar 

  33. Rahnamaye Aliabad HA, Hosseini SM, Kompany A, Youssefi A, Attaran E (2009) Optical properties of pure and transition metal-doped indium oxide. Phys. stat. sol. (b) 246:1072–1081. https://doi.org/10.1002/pssb.200844359

    Article  CAS  Google Scholar 

  34. Rahnamaye Aliabad HA, Asadi Y, Ahmed I (2012a) Quasiparticle optoelectronic properties of pure and doped Indium Oxide. Opt Mater 34:1406–1414. https://doi.org/10.1016/j.optmat.2012.02.038

    Article  CAS  Google Scholar 

  35. Rahnamaye Aliabad HA, Ghazanfari M, Ahmad I, Saeed MA (2012b) Ab initio calculations of structural, optical and thermoelectric properties for CoSb3 and ACo4Sb12 (A = La, Tl and Y) compounds. Comput Mater Sci 65:509–519. https://doi.org/10.1016/j.commatsci.2012.08.013

    Article  CAS  Google Scholar 

  36. Rahnamaye Aliabad HA, Fathabadi M, Ahmad I (2013) Optoelectronic properties of KDP by first principle calculations. Int J Quantum Chem 113:865–872. https://doi.org/10.1002/qua.24258

    Article  CAS  Google Scholar 

  37. Rahnamaye Aliabad HA, Tayebee R, Boroumand Khalili M (2015) Ab initio studies of optoelectronic properties of fluorine-substituted ferrocene. Research on Chemical Intermediates 42:3743–3761. https://doi.org/10.1007/s11164-015-2242-8

    Article  CAS  Google Scholar 

  38. Rahnamaye Aliabad HA, Mojarradi Z, Yalcin BG (2016) DFT studies for optoelectronic properties of pure l-alanine and doped with Li. Journal of Materials Science: Materials in Electronics 27:4887–4897. https://doi.org/10.1007/s10854-016-4372-1

    CAS  Article  Google Scholar 

  39. Rahnamaye Aliabad HA, Vaezi H, Basirat S, Ahmad I (2017) Role of the Crystal Lattice Constants and Band Structures in the Optoelectronic Spectra of CdGa2S4 by DFT Approaches. Z Anorg Allg Chem 643:839–849. https://doi.org/10.1002/zaac.201700027

    Article  CAS  Google Scholar 

  40. Riley KE, Pitoňák M, Jurečka P, Hobza P (2010) Stabilization and structure calculations for noncovalent interactions in extended molecular systems based on wave function and density functional theories. Chem Rev 110(9):5023–5063. https://doi.org/10.1021/cr1000173

    Article  CAS  Google Scholar 

  41. Selvanayagam S, Sridharb B, Ravikumarb K (2008) Erlotinib hydrochloride: an anticancer, Agent. Acta Cryst. E 64:o931. https://doi.org/10.1107/s1600536808011707

    Article  CAS  Google Scholar 

  42. Seth SK, Saha I, Estarellas C, Frontera A, Kar T, Mukhopadhyay S (2011) Supramolecular self-assembly of M-IDA complexes involving lone-pair···π interactions: crystal structures, hirshfeld surface analysis, and DFT calculations [H 2 IDA = iminodiacetic acid, M = Cu(II), Ni(II)]. Cryst Growth Des 11(7):3250–3265. https://doi.org/10.1021/cg200506q

    Article  CAS  Google Scholar 

  43. Wang S, Chen KJ, Wu TH, Wang H, Lin WY, Ohashi M, Chiou PY, Tseng HR (2010) Photothermal Effects of Supramolecularly Assembled Gold Nanoparticles for the Targeted Treatment of Cancer Cells. Angew. Chem. Int. Edit. 49:3777–3781. https://doi.org/10.1002/ange.201000062

    Article  CAS  Google Scholar 

  44. Weissleder R (2001) A clearer vision for in vivo imaging. Nat. Biotechnol. 19:316–317. https://doi.org/10.1038/86684

    Article  CAS  PubMed  Google Scholar 

  45. Yang Y, Song WX, Wang AH, Zhu PL, Fei JB, Li JB (2010) Lipid coated mesoporous silica nanoparticles as photosensitive drug carriers. Phys. Chem. Chem. Phys. 12:4418–4422. https://doi.org/10.1039/b924370d

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

HARA and MCH gratefully acknowledge the financial support by the Hakim Sabzevari University, Sabzevar, Iran. Prof. P. Blaha, Vienna University of Technology, Austria, is appreciated for his technical help in the use of Wien2 k package.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to H. A. Rahnamaye Aliabad or M. Chahkandi.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Aliabad, H.A.R., Chahkandi, M. Theoretical study of crystalline network and optoelectronic properties of erlotinib hydrochloride molecule: non-covalent interactions consideration. Chem. Pap. 73, 737–746 (2019). https://doi.org/10.1007/s11696-018-0607-3

Download citation

Keywords

  • DFT
  • Structural and optoelectronic properties
  • Erlotinib hydrochloride
  • Birefringent