Chemical Papers

, Volume 73, Issue 1, pp 95–104 | Cite as

Theoretical investigations on the structural products of the amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate and the μ-S–C–N type binuclear tetranitrosyl iron complex interaction

  • Tatiana N. RudnevaEmail author
  • Nina S. Emel’yanovaEmail author
  • Svetlana V. Kurmaz
Original Paper


The amphiphilic copolymer of N-vinylpyrrolidone forms in isopropyl alcohol the copolymer particles with a core composed of low polar fragments of triethylene glycol dimethacrylate. In this work, quantum chemical modelling of various variants of the structural products of this copolymer and the μ-S–C–N type tetranitrosyl iron complex with a benzothiazole ligand was carried out. The theoretical IR spectra of these possible structural products are calculated and compared with experiments. Based on the results, it is assumed that the C=O bond of the copolymer’s methacrylate units is coordinated by the mononuclear iron complex, which is formed upon dissociation of the initial binuclear nitrosyl complex via the Fe–N bond of the heterocyclic ligand.


Iron–sulphur nitrosyl complexes N-vinylpyrrolidone Triethylene glycol dimethacrylate Amphiphilic copolymer IR spectroscopy TPSSh PCM 



The work was supported by the Russian Foundation for Basic Research, Grant No. 16-33-00592. Mass spectroscopy was carried out with the financial support of the Federal Agency of Scientific Organizations (State registration No. 0089-2014-0037); copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate was synthesized with the financial support of the Federal Agency of Scientific Organizations (State registration No. 0120-1055-328). The authors thank Dr. Vyacheslav Martynenko at the Analytical Center of IPCP RAS for mass spectroscopy research and Anna Prokofieva (“Kominsur”, Tallinn, Estonia) for her help in English.


  1. Aldoshin SM, Sanina NA, Davydov MI, Chazov EI (2016) A new class of nitric oxide donors. Herald Russ Acad Sci 86(3):158–163. CrossRefGoogle Scholar
  2. Bauschlicher CW Jr, Partridge H (1995) A modification of the Gaussian-2 approach using density functional theory. J Chem Phys 103:1788. CrossRefGoogle Scholar
  3. Begel S, Heinemann FW, Stopa G, Stochel G, van Eldik R (2011) The classic “Brown-Ring” reaction in a new medium: kinetics, mechanism, and spectroscopy of the reversible binding of nitric oxide to iron(II) in an ionic liquid. Inorg Chem 50(9):3946–3958. CrossRefGoogle Scholar
  4. Choudhari SK, Chaudhary M, Bagde S, Gadbail AR, Joshi V (2013) Nitric oxide and cancer: a review. World J Surg Oncol 11:118. CrossRefGoogle Scholar
  5. Espinosa E, Molins E, Lecomte C (1998) Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities. Chem Phys Lett 285(3–4):170–173. CrossRefGoogle Scholar
  6. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma L, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ, (2013) Gaussian 09, Revision D.01 Gaussian, Inc., Wallingford CT.Google Scholar
  7. Huang Z, Fu J, Zhang Y (2017) Nitric oxide donor-based cancer therapy: advances and prospects. J Med Chem 60:7617–7635. CrossRefGoogle Scholar
  8. Jaworska M, Stasicka Z (2005) Structure and UV–Vis spectroscopy of the iron-sulfur dinuclear nitrosyl complexes [Fe2S2(NO)4]2− and [Fe2(SR)2(NO)4]. New J Chem 29:604–612. CrossRefGoogle Scholar
  9. Kurmaz SV, Pyryaev AN (2010) Synthesis of N-vinyl-2-pyrrolidone based branched copolymers via crosslinking free radical copolymerization in the presence of a chain transfer agent. Polym Sci Ser B 52:1–8. CrossRefGoogle Scholar
  10. Kurmaz SV, Pyryaev AN (2012) Synthesis and properties of fullerene-containing N-vinylpyrrolidone copolymers. Russ J Gen Chem 82:1705–1714. CrossRefGoogle Scholar
  11. Kurmaz SV, Obraztsova NA, Balakina AA, Terent’ev AA (2016) Preparation of the amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate nanoparticles and the study of their properties in vitro. Russ Chem Bull 65(8):2097–2102. CrossRefGoogle Scholar
  12. Kurmaz S, Rudneva T, Sanina N (2018) New nitric oxide-carrier systems based on amphiphilic copolymer of N-vinylpyrrolidone with triethylene glycol dimethacrylate. Mendel Commun 28:73–75. CrossRefGoogle Scholar
  13. Lebedeva TL, Feldshtein MM, Platé NA, Kuptsov SA (2000) Structure of stable H-bonded poly(N-vinylpyrrolidone)-water complexes. Polym Sci Ser A 42(9):989–1005 (in Russian only) Google Scholar
  14. Li J, Peng Q, Oliver AG, Alp EE, Hu MY, Zhao J, Sage JT, Scheidt WR (2014) Comprehensive Fe-ligand vibration identification in {FeNO}6 hemes. J Am Chem Soc 136:18100–18110. CrossRefGoogle Scholar
  15. Li X, Zhang Y, Sun J, Chen W, Wang X, Shao F, Zhu Y, Feng F, Sun Y (2017) Protein nanocage-based photo-controlled nitric oxide releasing platform ACS. Appl Mater Interfaces 9:19519–19524. CrossRefGoogle Scholar
  16. Neill SJ, Desikan R, Hancock JT (2003) Nitric oxide signalling in plants. New Phytol 159:11–35. CrossRefGoogle Scholar
  17. Omer N, Rohilla A, Rohilla S, Kushnoor A (2012) Nitric oxide: role in human biology. Int J Pharm Sci Drug Res Res 4(2):105–109. Google Scholar
  18. Roudneva T, Sanina N, Mischenko D, Frog E, Kotel’nikova R, Aldoshin S (2008) Stabilization of tetranitrosyl thiosulfate iron complex by albumin. Nitric Oxide Biol Chem 19:S43. CrossRefGoogle Scholar
  19. Sanina NA, Zhukova OS, Smirnova ZS, Rudneva TN, Shilov GV, Aldoshin SM (2015) Binucliar nitrosyl-iron complexes with benzo-trans-heterocyclic derivatives and a method for the production thereof. Patent of India No. 268939Google Scholar
  20. Sanina NA, Kniazkina EV, Manzhos RA, Emel’yanova NS, Krivenko AG, Aldoshin SM (2016) Redox reactions of binuclear tetranitrosyl iron complexes with bridging N–C–S ligands. Inorg Chim Acta 449:61–64. CrossRefGoogle Scholar
  21. Shekhter AB, Rudenko TG, Istranov LP, Guller AE, Borodulin RR, Vanin AF (2015) Dinitrosyl iron complexes with glutathione incorporated into a collagen matrix as a base for the design of drugs accelerating skin wound healing. Eur J Pharm Sci 78:8–18. CrossRefGoogle Scholar
  22. Shmatko NY, Sanina NA, Anokhin DV, Kulikov AV, Aldoshin SM, Piryazev AA, Ivanov DA (2015) Synthesis and properties of polyvinylpyrrolidone films containing iron nitrosyl complexes as nitric oxide (NO) donors with antitumor and antiseptic activities. Russ Chem Bull 64:16161622. CrossRefGoogle Scholar
  23. Shumaev KB, Gubkin AA, Gubkina SA, Gudkov LL, Lakomkin VL, Topunov AF, Vanin AF, Ruuge EK (2007) Interaction between albumin-bound dinitrosyl iron complexes and reactive oxygen species. Biophysics 52(3):336–339. CrossRefGoogle Scholar
  24. Speelman LA, Zhang B, Silakov A, Skodje KM, Alp EE, Zhao J, Hu MY, Kim E, Krebs C, Lehnert N (2018) Unusual synthetic pathway for an {Fe(NO)2}9 dinitrosyl iron complex (DNIC) and insight into DNIC electronic structure via nuclear resonance vibrational spectroscopy. Inorg Chem 55(11):5485–5501. CrossRefGoogle Scholar
  25. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401–146404. CrossRefGoogle Scholar
  26. Todd A, Keith TK (2015) AIMAll (Version 15.05.18). Gristmill Software, Overland Park KS, USA.
  27. Weissberger A, Proskauer E, Riddick JA, Toops EE (1955) Organic solvents: physical properties and methods of purification. Wiley, New YorkGoogle Scholar
  28. Wo Y, Brisbois EJ, Bartlett RH, Meyerhoff ME (2016) Recent advances in thromboresistant and antimicrobial polymers for biomedical applications: just say yes to nitric oxide (NO). Biomater Sci 4:1161–1183. CrossRefGoogle Scholar
  29. Wu SC, Lu CY, Chen YL, Lo FC, Wang TY, Chen YJ, Yuan SS, Liaw WF, Wang YM (2016) Water-soluble dinitrosyl iron complex (DNIC): a Nitric oxide vehicle triggering cancer cell death via apoptosis. Inorg Chem 55:9383–9392. CrossRefGoogle Scholar
  30. Zhou Y, Yan D (2009) Supramolecular self-assembly of amphiphilic hyperbranched polymers at all scales and dimensions: progress, characteristics and perspectives. Chem Commun. Google Scholar
  31. Zhou Y, Huang W, Liu J, Zhu X, Yan D (2010) Self-assembly of hyperbranched polymers and its biomedical applications. Adv Mater 22:4567–4590. CrossRefGoogle Scholar
  32. Zhukova OS, Smirnova ZS, Tchikileva IO, Kiselevskii MV (2017) Antiproliferative activity of a new nitrosyl iron complex with cysteamine in Human Tumor Cells In Vitro. Bull Exp Biol Med 162(4):583–588. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Problems of Chemical PhysicsRussian Academy of ScienceChernogolovkaRussia

Personalised recommendations