Advertisement

Chemical Papers

, Volume 73, Issue 1, pp 205–214 | Cite as

Fischer–Tropsch synthesis: effect of silica on hydrocarbon production over cobalt-based catalysts

  • Elham Yaghoobpour
  • Yahya ZamaniEmail author
  • Saeed Zarrinpashne
  • Akbar Zamaniyan
Original Paper
  • 62 Downloads

Abstract

Support materials have an important role in Fischer–Tropsch synthesis (FTS) catalyst and are influenced by various factors. In this paper, the effects of silica augmentation to γ-Al2O3 supported cobalt material on morphology and performance of catalyst have been studied. A series of catalysts, contain 0, 5, 10, and 15 wt % SiO2, were prepared using the incipient wetness impregnation method. The prepared catalysts were characterized by various techniques such as BET, H2-TPR, XRD, and HRTEM. Then, the catalysts were tested in a fixed-bed reactor. The results showed that the addition of SiO2 material remarkably promoted the catalyst performance in terms of CO conversion, catalyst activity, and consequently catalytic yield. Among the synthesized catalysts, the catalyst with 10 wt% silica demonstrated an optimum silica addition to achieve the highest catalyst performance.

Keywords

Fischer–Tropsch synthesis Cobalt catalyst γ-Alumina support Silica effect 

Notes

Acknowledgements

The authors are gratefully acknowledged Research Institute of Petroleum Industry (RIPI) for financial support, which enabled this work to be undertaken.

References

  1. Bahadoran F, Moradian A, Shirazi L, Zamani Y (2017) Fischer-Tropsch synthesis: evaluation of Gd and Ru promoters effect on Co/γ-Al2O3 catalyst at different conditions. Chem Pap 72:309–325.  https://doi.org/10.1007/s11696-017-0281-x CrossRefGoogle Scholar
  2. Bartholomew CH, Farrauto RJ (2005) Fundamentals of industrial catalytic processes, 2nd edn. Wiley, Hoboken.  https://doi.org/10.1002/9780471730071.fmatter CrossRefGoogle Scholar
  3. Borg Ø, Hammer N, Eri S, Lindvåg OA, Myrstad R, Blekkan EA, Rønning M, Rytter E, Holmen A (2009) Fischer–Tropsch synthesis over un-promoted and Re-promoted γ-Al2O3 supported cobalt catalysts with different pore sizes. Catal Today 142:70–77.  https://doi.org/10.1016/j.cattod.2009.01.012 CrossRefGoogle Scholar
  4. Davis BH (2007) Fischer–Tropsch synthesis: comparison of performances of iron and cobalt catalysts. Ind Eng Chem Res 46:8938–8945.  https://doi.org/10.1021/ie0712434 CrossRefGoogle Scholar
  5. den Otter JH, Nijveld SR, de Jong KP (2016) Synergistic promotion of Co/SiO2 Fischer–Tropsch catalysts by niobia and platinum. ACS Catal 6:1616–1623.  https://doi.org/10.1021/acscatal.5b02418 CrossRefGoogle Scholar
  6. Enger BC, Fossan ÅL, Borg Ø, Rytter E, Holmen A (2011) Modified alumina as catalyst support for cobalt in the Fischer–Tropsch synthesis. J Catal 284:9–22.  https://doi.org/10.1016/j.jcat.2011.08.008 CrossRefGoogle Scholar
  7. Iglesia E, Soled SL, Fiato RA (1992) Fischer–Tropsch synthesis on cobalt and ruthenium. Metal dispersion and support effects on reaction rate and selectivity. J Catal 137:212–224.  https://doi.org/10.1016/0021-9517(92)90150-G CrossRefGoogle Scholar
  8. Iglesia E, Soled SL, Fiato RA, Via GH (1993) Bimetallic synergy in cobalt ruthenium Fischer–Tropsch synthesis catalysts. J Catal 143:345–368.  https://doi.org/10.1006/jcat.1993.1281 CrossRefGoogle Scholar
  9. Jacobs G, Das TK, Zhang Y, Li J, Racoillet G, Davis BH (2002a) Fischer–Tropsch synthesis: support, loading, and promoter effects on the reducibility of cobalt catalysts. Appl Catal A 233:263–281.  https://doi.org/10.1016/S0926-860X(02)00195-3 CrossRefGoogle Scholar
  10. Jacobs G, Patterson PM, Zhang Y, Das T, Li J, Davis BH (2002b) Fischer–Tropsch synthesis: deactivation of noble metal-promoted Co/Al2O3 catalysts. Appl Catal A 233:215–226.  https://doi.org/10.1016/S0926-860X(02)00147-3 CrossRefGoogle Scholar
  11. Jones RD, Bartholomew CH (1988) Improved flow technique for measurement of hydrogen chemisorption on metal catalysts. Appl Catal 39:77–88.  https://doi.org/10.1016/S0166-9834(00)80940-9 CrossRefGoogle Scholar
  12. Jongsomjit B, Panpranot J, Goodwin JG (2003) Effect of zirconia-modified alumina on the properties of Co/γ-Al2O3 catalysts. J Catal 215:66–77.  https://doi.org/10.1016/S0021-9517(02)00102-1 CrossRefGoogle Scholar
  13. Keyvanloo K, Hecker WC, Woodfield BF, Bartholomew CH (2014) Highly active and stable supported iron Fischer-Tropsch catalysts: effects of support properties and SiO2 stabilizer on catalyst performance. J Catal 319:220–231.  https://doi.org/10.1016/j.jcat.2014.08.015 CrossRefGoogle Scholar
  14. Khodakov AY, Griboval-Constant A, Bechara R, Villain F (2001) Pore size control of cobalt dispersion and reducibility in mesoporous silicas. J Phys Chem B 105:9805–9811.  https://doi.org/10.1021/jp011989u CrossRefGoogle Scholar
  15. Khodakov AY, Bechara R, Griboval-Constant A (2003) Fischer-Tropsch synthesis over silica supported cobalt catalysts: mesoporous structure versus cobalt surface density. Appl Catal A 254:273–288.  https://doi.org/10.1016/S0926-860X(03)00489-7 CrossRefGoogle Scholar
  16. Khodakov AY, Chu W, Fongarland P (2007) Advances in the development of novel cobalt Fischer–Tropsch catalysts for synthesis of long-chain hydrocarbons and clean fuels. Chem Rev 107:1692–1744.  https://doi.org/10.1021/cr050972v CrossRefGoogle Scholar
  17. Ma W, Jacobs G, Keogh R, Yen ChH, Klettlinger JLS, Davis BH (2011) Fischer–Tropsch synthesis: effect of Pt promoter on activity, selectivities to hydrocarbons and oxygenates, and kinetic parameters over 15%Co/Al2O3. Synthetic Liq Prod Refin ACS.  https://doi.org/10.1021/bk-2011-1084.ch006 Google Scholar
  18. Ma W, Jacobs G, Keogh RA, Bukur DB, Davis BH (2012) Fischer–Tropsch synthesis: effect of Pd, Pt, Re, and Ru noble metal promoters on the activity and selectivity of a 25%Co/Al2O3 catalyst. Appl Catal A 437–438:1–9.  https://doi.org/10.1016/j.apcata.2012.05.037 CrossRefGoogle Scholar
  19. Ma W, Jacobs G, Gao P, Jermwongratanachai T, Shafer Wilson D, Pendyalam VRR, Yen Chia H, Klettlinger JLS, Davis BH (2014) Fischer–Tropsch synthesis: pore size and Zr promotional effects on the activity and selectivity of 25%Co/Al2O3 catalysts. Appl Catal A 475:314–324.  https://doi.org/10.1016/j.apcata.2014.01.016 CrossRefGoogle Scholar
  20. Patzlaff J, Liu Y, Graffmann C, Gaube J (1999) Studies on product distributions of iron and cobalt catalyzed Fischer–Tropsch synthesis. Appl Catal A 186:109–119.  https://doi.org/10.1016/S0926-860X(99)00167-2 CrossRefGoogle Scholar
  21. Rahmati M, Huang B, Mortensen MK Jr, Keyvanloo K, Fletcher TH, Woodfield BF, Hecker WC, Argyle MD (2018) Effect of different alumina supports on performance of cobalt Fischer–Tropsch catalysts. J Catal 359:92–100.  https://doi.org/10.1016/j.jcat.2017.12.022 CrossRefGoogle Scholar
  22. Rane S, Borg Ø, Rytter E, Holmen A (2012) Relation between hydrocarbon selectivity and cobalt particle size for alumina supported cobalt Fischer–Tropsch catalysts. Appl Catal A 437–438:10–17.  https://doi.org/10.1016/j.apcata.2012.06.005 CrossRefGoogle Scholar
  23. Razmara Z, Rezvani AR, Saravani H (2017) Fischer–Tropsch reaction over a Co2-Ni-Mn/SiO2 nanocatalyst prepared by thermal decomposition of a new precursor. Chem Pap 71:849–856.  https://doi.org/10.1007/s11696-016-0100-9 CrossRefGoogle Scholar
  24. Reuel RC, Bartholomew CH (1984) The stoichiometries of H2 and CO adsorptions on cobalt: effects of support and preparation. J Catal 85:63–77.  https://doi.org/10.1016/0021-9517(84)90110-6 CrossRefGoogle Scholar
  25. Rytter E, Holmen A (2015) Deactivation and regeneration of commercial type Fischer–Tropsch co-catalysts—a mini-review. Catalysts 5:478–499.  https://doi.org/10.3390/catal5020478 CrossRefGoogle Scholar
  26. Rytter E, Holmen A (2016) On the support in cobalt Fischer–Tropsch synthesis—Emphasis on alumina and aluminates. Catal Today 275:11–19.  https://doi.org/10.1016/j.cattod.2015.11.042 CrossRefGoogle Scholar
  27. Sari A, Zamani Y, Taheri SA (2009) Intrinsic kinetics of Fischer–Tropsch reactions over an industrial Co–Ru/γ-Al2O3 catalyst in slurry phase reactor. Fuel Process Technol 90:1305–1313.  https://doi.org/10.1016/j.fuproc.2009.06.024 CrossRefGoogle Scholar
  28. Savost’yanov AP, Yakovenko RE, Sulima SI, Bakun VG, Narochnyi GB, Chernyshev VM, Mitchenko SA (2016) The impact of Al2O3 promoter on an efficiency of C5 + hydrocarbons formation over Co/SiO2 catalysts via Fischer–Tropsch synthesis. Catal Today 279:107–114.  https://doi.org/10.1016/j.cattod.2016.02.037 CrossRefGoogle Scholar
  29. Shimura K, Miyazawa T, Hanaoka T, Hirata S (2015) Fischer–Tropsch synthesis over alumina supported cobalt catalyst: effect of promoter addition. Appl Catal A 494:1–11.  https://doi.org/10.1016/j.apcata.2015.01.017 CrossRefGoogle Scholar
  30. Sun X, Zhang X, Zhang Y, Tsubaki N (2010) Reversible promotional effect of SiO2 modification to Co/Al2O3 catalyst for Fischer–Tropsch synthesis. Appl Catal A 377:134–139.  https://doi.org/10.1021/ef050218c CrossRefGoogle Scholar
  31. Wu H, Yang Yong Y, Suo H, Qing M, Yan L, Wu B, Xu J, Xiang H, Li Y (2015) Effects of ZrO2 promoter on physic-chemical properties and activity of Co/TiO2–SiO2 Fischer–Tropsch catalysts. J Mol Catal A: Chem 396:108–119.  https://doi.org/10.1016/j.molcata.2014.09.024 CrossRefGoogle Scholar
  32. Xiong H, Xiong H, Zhang Y, Liew K, Li J (2005) Catalytic performance of zirconium- modified Co/Al2O3 for Fischer–Tropsch synthesis. J Mol Catal A Chem 231:145–151.  https://doi.org/10.1016/j.molcata.2004.12.033 CrossRefGoogle Scholar
  33. Zhang Y, Nagamori S, Hinchiranan S, Vitidsant Th, Tsubaki N (2006) Promotional effects of Al2O3 addition to Co/SiO2 catalysts for Fischer–Tropsch synthesis. Energy Fuels 20:417–421.  https://doi.org/10.1021/ef050218c CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Elham Yaghoobpour
    • 1
  • Yahya Zamani
    • 1
    Email author
  • Saeed Zarrinpashne
    • 1
  • Akbar Zamaniyan
    • 1
  1. 1.Gas Research DivisionResearch Institute of Petroleum Industry (RIPI)TehranIran

Personalised recommendations