Synthesis of a new series of aryl(thieno[2,3-b]quinolin-2-yl)methanone and 2-(2-aroyl-2,3-dihydrothieno[2,3-b]quinolin-3-yl)-1-arylethanone derivatives via sequential multi-component reaction

Original Paper
  • 2 Downloads

Abstract

An efficient, mild, and convenient protocol for the synthesis of aryl(thieno[2,3-b]quinolin-2-yl)methanone and 2-(2-aroyl-2,3-dihydrothieno[2,3-b]quinolin-3-yl)-1-arylethanone derivatives from readily available starting materials via a sequential multi-component reaction has been developed. The products were obtained with excellent yield (85–95%) within short reaction times (25-30 min) in DMF at room temperature. The structures of all synthesized compounds were characterized using IR, 1H NMR, 13C NMR, and mass spectral data and elemental analysis.

Graphical abstract

Keywords

3-Formyl-2-chloroquinoline Sodium sulfide 3-Formyl-2-mercaptoquinoline Phenacyl bromide Thieno[2,3-b]quinolines Dihydrothieno[2,3-b]quinoline Sequential multi-component reactions 

Supplementary material

11696_2018_497_MOESM1_ESM.docx (33.5 mb)
Supplementary material 1 (DOCX 34291 kb)

References

  1. Alizadeh A, Mokhtari J (2011a) Novel four-component route to the synthesis of spiro[indoline-3,4′-pyridine]-3′-carboxylate derivatives. Tetrahedron 67:3519–3523.  https://doi.org/10.1016/j.tet.2011.03.032 CrossRefGoogle Scholar
  2. Alizadeh A, Mokhtari J (2011b) A novel, one-pot four-component route to 2′-thioxo-2′,3′-dihydrospiro[indole-3,6′-[1,3]thiazin]-2-one derivatives. Helv Chim Acta 94:1315–1319.  https://doi.org/10.1002/hlca.201000419 CrossRefGoogle Scholar
  3. Alizadeh A, Roosta A, Halvagar MR (2017a) An efficient one-pot synthesis of highly substituted [1,8]naphthyridin-1-phenyl-1-ethanone derivatives via a four-component reaction. J Iran Chem Soc 14:2157–2165.  https://doi.org/10.1007/s13738-017-1152-7 CrossRefGoogle Scholar
  4. Alizadeh A, Roosta A, Rezaiyehrad R, Halvagar MR (2017b) Efficient one pot and chemoselective synthesis of functionalized 3-bromo-4,5-dihydroisoxazole derivatives via 1,3-dipolar cycloaddition reactions of nitrile oxides. Tetrahedron 73:6706–6711.  https://doi.org/10.1016/j.tet.2017.10.003 CrossRefGoogle Scholar
  5. Baruah B, Bhuyan PJ (2009) Synthesis of some complex pyrano[2,3-b]-and pyrido[2,3-b]quinolines from simple acetanilides via intramolecular domino hetero diels–alder reactions of 1-oxa-1,3-butadienes in aqueous medium. Tetrahedron 65:7099–7104.  https://doi.org/10.1016/j.tet.2009.06.036 CrossRefGoogle Scholar
  6. Chauhan P, Sk Srivastava (2001) Present trends and future strategy in chemotherapy of malaria. Curr Med Chem 8:1535–1542.  https://doi.org/10.2174/0929867013371851 CrossRefGoogle Scholar
  7. Chen Y-L, Fang K-C, Sheu J-Y, Hsu S-L, Tzeng C-C (2001) Synthesis and antibacterial evaluation of certain quinolone derivatives. J Med Chem 44:2374–2377.  https://doi.org/10.1021/jm0100335 CrossRefGoogle Scholar
  8. Colin JD (1990) Comprehensive medicinal chemistry, Vol. 6, 1st edn. Pergamon press, OxfordGoogle Scholar
  9. El-Kashef H, Kamal El-Dean AM, Geies AA, Lancelot J, Dallemagne P, Rault S (2000) New fused pyrazines. synthesis of pyrido[3′,2′:4,5]-thieno[2,3-e]pyrrolo[1,2-a]pyrazine derivatives. J Heterocyclic Chem 37:1520.  https://doi.org/10.1002/jhet.5570370618
  10. Hashimoto K, Inoe M, Tomoyasu T, Kamisako T, Sugimoto Y, Kuwabara T (1994). Japan Patent JP0692963Google Scholar
  11. Hosni HM, Basyouni WM, El-Nahas HA (1999a) Thienopyrimidines. Part III. Synthesis of novel substituted thieno[2,3-d]pyrimidinone derivatives and their condensed products with molluscicidal and larvicidal activities. J Chem Res, Synopses.  https://doi.org/10.1039/a904776j Google Scholar
  12. Hosni HM, Basyouni WM, El-Bnyouki KAM (1999b) Thienopyrimidines II: Syntesis of newer thieno[2.3-d]pirimidines and their quatenized derivatives with molluscicidal activity. Acta Pol Pharm 56:49–56. http://www.ptfarm.pl/pub/File/wydawnictwa/acta_pol_1999/pdf-y%201999_1/049-056.pdf
  13. Karthikeyan C, Solomon VR, Lee H, Trivedi P (2013) Design, synthesis and biological evaluation of some isatin-linked chalcones as novel anti-breast cancer agents: a molecular hybridization approach. Biomed Prev Nutr 3:325–330.  https://doi.org/10.1016/j.bionut.2013.04.001 CrossRefGoogle Scholar
  14. Macaev F et al (2007) Synthesis and structure of new oxoindoles. Chem Heterocyc Compd 43:298–305.  https://doi.org/10.1007/s10593-007-0045-6 CrossRefGoogle Scholar
  15. Madapa S, Tusi Z, Batra S (2008) Advances in the syntheses of quinoline and quinoline-annulated ring systems. Curr Org Chem 12:1116–1183.  https://doi.org/10.2174/138527208785740300 CrossRefGoogle Scholar
  16. Marco-Contelles J, Carreiras M (2010) The friedlander reaction lambert academic, saarbrucken, GermanyGoogle Scholar
  17. Marco-Contelles J, Pérez-Mayoral E, Samadi A, Mdc Carreiras, Soriano E (2009) Recent advances in the friedlander reaction. Chem Rev 109:2652–2671.  https://doi.org/10.1021/cr800482c CrossRefGoogle Scholar
  18. Maruyama Y, Goto K, Terasawa M (1981) Use of 9-chloro-7-(1H-tetrazol-5-yl)-5-oxo-5H [1 h]benzopyrano[2,3-b]pyridine and its salts and hydrates in the treatment of rheumatic maladies. Ger Offen De Patent 3010751:19810806Google Scholar
  19. Michael JP (2008) Quinoline, quinazoline and acridone alkaloids. Nat Prod Rep 25:166–187.  https://doi.org/10.1039/b612168n CrossRefGoogle Scholar
  20. Modica M et al (1997) [[(Arylpiperazinyl)alkyl]thio]thieno[2,3-d]pyrimidinone derivatives as high-affinity, selective 5-HT1A receptor ligands. J Med Chem 40:574–585.  https://doi.org/10.1021/jm950866t CrossRefGoogle Scholar
  21. Morizawa Y, Okazoe T, Wang S-Z, Sasaki J, Ebisu H, Nishikawa M, Shinyama H (2001) A novel trifluoromethanesulfonamidophenyl-substituted quinoline derivative, GA 0113: synthesis and pharmacological profiles. J Fluorine Chem 109:83–86.  https://doi.org/10.1016/s0022-1139(01)00383-9 CrossRefGoogle Scholar
  22. Mugnaini C, Pasquini S, Corelli F (2009) The 4-quinolone-3-carboxylic acid motif as a multivalent scaffold in medicinal chemistry. Curr Med Chem 16:1746–1767.  https://doi.org/10.2174/092986709788186156 CrossRefGoogle Scholar
  23. Nandeshwarappa B (2017) Novel synthesis of new thieno[2,3-b]quinoline-2-carboxylates. J Chem Chemical Sci 7:230–236. http://chemistry-journal.org/dnload/B-P-Nandeshwarappa/CHEMISTRY-JOURNAL-CHJV07I03P0230.pdf
  24. Nandeshwarappa BP, Aruna Kumar DB, Bhojya Naik HS, Mahadevan KM (2005) An efficient microwave-assisted synthesis of thieno[2,3-b]quinolines under solvent-free conditions. J Sulfur Chem 26:373–379.  https://doi.org/10.1080/17415990500456368 CrossRefGoogle Scholar
  25. Poursattar Marjani A, Khalafy J, Rostampoor A (2017) The synthesis of new benzo[h]thieno[2,3-b]quinoline-9-yl(aryl)methanone derivatives. J Heterocyclic Chem 54:648–652.  https://doi.org/10.1002/jhet.2637 CrossRefGoogle Scholar
  26. Raju V, Mohan S, Saravanan J (1998) Synthesis & biological activity of some 2-substituted-amino-3-(N-o-tolylcarboxamido)-4,5-dimethylthiophenes. Indian J Heterocy Ch 8:59-62. https://www.tib.eu/en/search/id/BLSE%3ARN057232419
  27. Roma G, Di Braccio M, Grossi G, Mattioli F, Ghia M (2000) 1,8-Naphthyridines IV. 9-Substituted N, N-dialkyl-5-(alkylamino or cycloalkylamino)[1,2,4]triazolo[4,3-a][1,8]naphthyridine-6-carboxamides, new compounds with anti-aggressive and potent anti-inflammatory activities. Eur J Med Chem 35:1021–1035.  https://doi.org/10.1016/s0223-5234(00)01175-2 CrossRefGoogle Scholar
  28. Russell RK, Press JB, Rampulla RA, McNally JJ, Falotico R, Keiser JA, Bright DA, Tobia A (1988) Thiophene systems 9. Thienopyrimidinedione derivatives as potential antihypertensive agents. J Med Chem 31:1786–1793.  https://doi.org/10.1021/jm00117a019 CrossRefGoogle Scholar
  29. Shafeeque S, Mohan S, Manjunatha K (1999) Synthesis, analgesic and antiinflammatory activity of some 2-substituted amino-3-(np-tolylcarboxamido)-4,5-dimethyl thiophenes. Indian J Heterocy Ch 8:297–300. https://www.tib.eu/en/search/id/BLSE%3ARN068051095
  30. Shiri M, Ma Zolfigol, Hg Kruger, Tanbakouchian Z (2011) Friedländer annulation in the synthesis of azaheterocyclic compounds. Adv Heterocycl Chem 102:139–227.  https://doi.org/10.1016/b978-0-12-385464-3.00002-9 CrossRefGoogle Scholar
  31. Shutske Gm, Kapples Kj (1988) Fused heterocyclic tetrahydroaminoquinolinols and related compounds. US4753950A, USPatentGoogle Scholar
  32. Srivastava A, Singh R (2005) Vilsmeier-Haack reagent: A facile synthesis of 2-chloro-3-formylquinolines from N-arylacetamides and transformation into different functionalities Indian J Chem 44B:1868–1875. http://nopr.niscair.res.in/handle/123456789/9179
  33. Wei P-S, Wang M-X, Xu D-C, Xie J-W (2016) Synthesis of 2,3-dihydrothieno(2,3-b)quinolines and thieno[2,3-b]-quinolines via an unexpected domino aza-MBH/alkylation/aldol reaction. J Org Chem 81:1216–1222.  https://doi.org/10.1021/acs.joc.5b02369 CrossRefGoogle Scholar
  34. Wu L, Wang Y, Song H, Tang L, Zhou Z, Tang C (2013) Synthesis of optically active 2H-thiopyrano[2,3-b]quinolines with three contiguous stereocentersviaan organocatalytic asymmetric tandem michael-henry reaction. Adv Synth Catal 355:1053–1057.  https://doi.org/10.1002/adsc.201300086 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Department of ChemistryTarbiat Modares UniversityTehranIran

Personalised recommendations