Negative field-dependent charge mobility in crystalline organic semiconductors with delocalized transport

Abstract

Charge-carrier mobility has been investigated by time-of-flight (TOF) transient photocurrent in a lateral transport configuration in highly crystalline thin films of 2,7-dioctyl[1]benzothieno [3,2-b][1] benzothiophene (C8-BTBT) grown by a zone-casting alignment technique. High TOF mobility has been revealed that it is consistent with the delocalized nature of the charge transport in this material, yet it featured a positive temperature dependence at \( T \ge 295\,{\text{K}} \). Moreover, the mobility was surprisingly found to decrease with electric field in the high-temperature region. These observations are not compatible with the conventional band-transport mechanism. We have elaborated an analytic model based on effective-medium approximation to rationalize the puzzling findings. The model considers the delocalized charge transport within the energy landscape formed by long-range transport band-edge variations in imperfect organic crystalline materials and accounts for the field-dependent effective dimensionality of charge transport percolative paths. The results of the model calculations are found to be in good agreement with experimental data.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Bässler H (1993) Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Phys Stat Sol b 175:15–56. https://doi.org/10.1002/pssb.2221750102

    Article  Google Scholar 

  2. Becerril HA, Roberts ME, Liu Z, Locklin J, Bao Z (2008) High-performance organic thin-film transistors through solution-sheared deposition of small-molecule organic semiconductors. Adv Mat 20:2588–2594. https://doi.org/10.1002/adma.200703120

    Article  CAS  Google Scholar 

  3. Borsenberger PM, Weiss DS (1998) Organic photoreceptors for xerography. Dekker, New York

    Google Scholar 

  4. Borsenberger PM, Pautmeier L, Bässler H (1991) Charge transport in disordered molecular solids. J Chem Phys 94:5447–5454. https://doi.org/10.1063/1.460506

    Article  CAS  Google Scholar 

  5. Böttger H, Bryksin VV (1982) Hopping conductivity in ordered and disordered systems (III). Phys Status Solidi 113:9–49. https://doi.org/10.1002/pssb.2221130102

    Article  Google Scholar 

  6. Böttger H, Wegener D (1984) Numerical investigation of non-Ohmic hopping conduction in disordered systems. Philos Mag Part B 50:409–419. https://doi.org/10.1080/13642818408238868

    Article  Google Scholar 

  7. Cordes H, Daranovskii SD, Kohary K, Thomas P, Yamasaki S (2001) One-dimensional hopping transport in disordered organic solids. I. Analytic calculations. Phys. Rev. B 63:094201. https://doi.org/10.1103/physrevb.63.094201

    Article  Google Scholar 

  8. Coropceanu V, Cornil J, da Silva Filho DA, Olivier Y, Silbey R, Brédas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952. https://doi.org/10.1021/cr050140x

    Article  CAS  PubMed  Google Scholar 

  9. Day J, Subramanian S, Anthony JE, Lu Z, Twieg RJ, Ostroverkhova O (2008) Photoconductivity in organic thin films: From picoseconds to seconds after excitation. J Appl Phys 103:123715. https://doi.org/10.1063/1.2946453

    Article  CAS  Google Scholar 

  10. Fishchuk II, Kadashchuk A, Bässler H, Abkowitz M (2004) Low-field charge-carrier hopping transport in energetically and positionally disordered organic materials. Phys Rev B 70:245212. https://doi.org/10.1103/PhysRevB.70.245212

    Article  CAS  Google Scholar 

  11. Fishchuk II, Kadashchuk A, Hoffmann ST, Athanasopoulos S, Genoe J, Bässler H, Köhler A (2013) Unified description for hopping transport in organic semiconductors including both energetic disorder and polaronic contributions. Phys Rev B 88:125202. https://doi.org/10.1103/PhysRevB.88.125202

    Article  CAS  Google Scholar 

  12. Fishchuk II, Kadashchuk A, Bhoolokam A, de Jamblinne de Meux A, Pourtois G, Gavrilyuk MM, Köhler A, Bässler H, Heremans P, Genoe J (2016) Interplay between hopping and band transport in high-mobility disordered semiconductors at large carrier concentrations: the case of the amorphous oxide InGaZnO. Phys Rev B 93:195204. https://doi.org/10.1103/physrevb.93.195204

    Article  Google Scholar 

  13. Guo M, Yan X, Goodson T (2008) Electron mobility in a novel hyper-branched phthalocyanine dendrimer. Adv Mat 20:4167–4171. https://doi.org/10.1002/adma.200702637

    Article  CAS  Google Scholar 

  14. Haas S, Stassen AF, Schuck G, Pernstich KP, Gundlach DJ, Batlogg B, Berens U, Kirner H-J (2007) High charge-carrier mobility and low trap density in a rubrene derivative. Phys Rev B 76:115203. https://doi.org/10.1103/PhysRevB.76.115203

    Article  CAS  Google Scholar 

  15. Howard JA, Street RA (1991) Evidence for potential fluctuations in compensated amorphous silicon. Phys Rev B 44:7935–7940. https://doi.org/10.1103/PhysRevB.44.7935

    Article  CAS  Google Scholar 

  16. Janneck R, Vercesi F, Heremans P, Genoe J, Rolin C (2016) Predictive model for the meniscus-guided coating of high-quality organic single-crystalline thin films. Adv Mater 28:8007. https://doi.org/10.1002/adma.201602377

    Article  CAS  PubMed  Google Scholar 

  17. Janneck R, Pilet N, Bommanaboyena SP, Watts B, Heremans P, Genoe J, Rolin C (2017) Highly crystalline C8-BTBT thin-film transistors by lateral homo-epitaxial growth on printed templates. Adv Mater 29:1703864–1703868. https://doi.org/10.1002/adma.201703864

    Article  CAS  Google Scholar 

  18. Kadashchuk A, Tong F, Janneck R, Fishchuk II, Mityashin A, Pavlica E, Köhler A, Heremans P, Rolin C, Bratina G, Genoe J (2017) Role of transport band edge variation on delocalized charge transport in high-mobility crystalline organic semiconductors. Phys Rev B 96:125202. https://doi.org/10.1103/PhysRevB.96.125202

    Article  Google Scholar 

  19. Kamiya T, Nomura K, Hosono H (2010) Origin of definite Hall voltage and positive slope in mobility-donor density relation in disordered oxide semiconductors. Appl Phys Lett 96:122103. https://doi.org/10.1063/1.3364131

    Article  CAS  Google Scholar 

  20. Kane EO (1963) Thomas-fermi approach to impure semiconductor band structure. Phys Rev 131:79. https://doi.org/10.1103/PhysRev131.79

    Article  Google Scholar 

  21. Karl N (2003) Charge carrier transport in organic semiconductors. Synth Met 133–134:649–657. https://doi.org/10.1016/S0379-6779(02)00398-3

    Article  CAS  Google Scholar 

  22. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588. https://doi.org/10.1103/RevModPhys.45.574

    Article  Google Scholar 

  23. Kobayashi H, Kobayashi N, Hosoi S, Koshitani N, Murakami D, Shirasawa R, Kudo Y, Hobara D, Tokita Y, Itabashi M (2013) Hopping and band mobilities of pentacene, rubrene, and 2,7-dioctyl[1]benzothieno[3,2-b][1]benzothiophene (C8-BTBT) from first principle calculations. J Chem Phys 139:14707–14708. https://doi.org/10.1063/1.4812389

    Article  CAS  Google Scholar 

  24. Mityashin A, Roscioni OM, Muccioli L, Zannoni C, Geskin V, Cornil J, Janssen D, Steudel S, Genoe J, Heremans P (2014) Multiscale modeling of the electrostatic impact of self-assembled monolayers used as gate dielectric treatment in organic thin-film transistors. ACS Appl Mater Interf 6:15372–15378. https://doi.org/10.1021/am503873f

    Article  CAS  Google Scholar 

  25. Mozer AJ, Sariciftci NS, Pivrikas A, Österbacka R, Juška G, Brassat L, Bässler H (2005) Charge carrier mobility in regioregular poly(3-hexylthiophene) probed by transient conductivity techniques: a comparative study. Phys Rev B 71:035214. https://doi.org/10.1103/PhysRevB.71.035214

    Article  CAS  Google Scholar 

  26. Nardone M, Simon M, Karpov IV, Karpov VG (2012) Electrical conduction in chalcogenide glasses of phase change memory. J Appl Phys 112:71101. https://doi.org/10.1063/1.4738746

    Article  CAS  Google Scholar 

  27. Nenashev AV, Jansson F, Baranovskii SD, Österbacka R, Dvurechenskii AV, Gebhard F (2008) Hopping conduction in strong electric fields: negative differential conductivity. Phys Rev B 78:165207. https://doi.org/10.1103/PhysRevB.78.165207

    Article  CAS  Google Scholar 

  28. Pautmeier L, Ichert R, Bässler H (1991) Anomalous time-independent diffusion of charge carriers in a random potential under a bias field. Philos Mag A 63:587–601. https://doi.org/10.1080/13642819108225974

    Article  CAS  Google Scholar 

  29. Pavlica E, Bratina G (2012) Time-of-flight mobility of charge carriers in position-dependent electric field between coplanar electrodes. Appl Phys Lett 101:93304–93305. https://doi.org/10.1063/1.4742149

    Article  CAS  Google Scholar 

  30. Peled A, Schein LB (1988) Hole mobilities that decrease with increasing electric fields in a molecularly doped polymer. Chem Phys Lett 153:422–424. https://doi.org/10.1016/0009-2614(88)85236-9

    Article  CAS  Google Scholar 

  31. Rudenko AI, Arkhipov VI (1982) Drift and diffusion in materials with traps I. Quasi-equilibrium transport regime. Phil Mag B 45:177–187. https://doi.org/10.1080/13642818208246326

    Article  CAS  Google Scholar 

  32. Rybak A, Pfleger J, Jung J, Pavlik M, Glowacki I, Ulanski J, Tomovic Z, Müllen K, Geerts Y (2006) Charge carrier transport in layers of discotic liquid crystals as studied by transient photocurrents. Synth Met 156:302–309. https://doi.org/10.1016/j.synthmet.2005.12.007

    Article  CAS  Google Scholar 

  33. Shi W, Chen J, Xi J, Wang D, Shuai Z (2014) Search for organic thermoelectric materials with high mobility: the case of 2,7-dialkyl[1]benzothieno[3,2-b][1]benzothio-phene derivatives. Chem Mater 26:2669–2677. https://doi.org/10.1021/cm500429w

    Article  CAS  Google Scholar 

  34. Shklovskii BI, Efros AL (1984) Electronic processes of doped semiconductors. Springer-Verlag, Berlin

    Google Scholar 

  35. Silinsh E, Capek V (1994) Organic molecular crystals: interaction, localization, and transport phenomena. American Institute of Physics Press, New York

    Google Scholar 

  36. Toman P, Nešpůrek S, Bartkowiak W (2009) Modelling of charge carrier transport in conjugated polymers doped by polar additives. Mat Sci-Poland 27:797–812

    CAS  Google Scholar 

  37. Uemura T, Hirose Y, Uno M, Takimiya K, Takeya J (2009) Very high mobility in solution-processed organic thin-film transistors of highly ordered [1]benzothieno[3,2-b]benzothiophene derivatives. Appl Phys Express 2:111501–111503. https://doi.org/10.1143/APEX.2.111501

    Article  CAS  Google Scholar 

  38. Uemura T, Nakayama K, Hirose Y, Soeda J, Uno M, Li W, Yamagishi M, Okada Y, Takeya J (2012) Band-like transport in solution-crystallized organic transistors. Curr Appl Phys 12:S87–S91. https://doi.org/10.1016/j.cap.2012.05.046

    Article  Google Scholar 

  39. van der Meer M, Schuchardt R, Keiper R (1982) Strong-field hopping in disordered semiconductors a problem of directed percolation. Phys Status Solidi 110:571–580. https://doi.org/10.1002/pssb.2221100226

    Article  Google Scholar 

  40. Yamamoto T, Takimiya K (2007) Facile synthesis of highly π-extended heteroarenes, dinaphtho[2,3-b:2‘,3‘-f]chalcogenopheno[3,2-b]chalcogenophenes, and their application to field-effect transistors. J Am Chem Soc 129:2224–2225. https://doi.org/10.1021/ja068429z

    Article  CAS  PubMed  Google Scholar 

  41. Yoshikawa T, Nagase T, Kobayashi T, Murakami S, Naito H (2008) Analysis of time-of-flight transient photocurrent in organic semiconductors with coplanar-blocking-electrodes configuration. Thin Solid Films 516:2595–2599. https://doi.org/10.1016/j.tsf.2007.04.156

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors gratefully acknowledge Nippon Kayaku Co. for providing C8-BTBT for this study. This research was supported by the Slovenian Research Agency and the Belgian FWO in the framework of the international collaboration project ORSIC-HIMA (Project No. N1-0024/G0B5914 N), by the European Research Council via Grant No. 320680 (EPOS CRYSTALLI), and by the Volkswagen Foundation through the project “Understanding the dependence of charge transport on morphology in organic semiconductor films”.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Andrey Kadashchuk.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kadashchuk, A., Janneck, R., Tong, F. et al. Negative field-dependent charge mobility in crystalline organic semiconductors with delocalized transport. Chem. Pap. 72, 1685–1695 (2018). https://doi.org/10.1007/s11696-018-0483-x

Download citation

Keywords

  • Organic semiconductors
  • Thin crystalline films
  • C8-BTBT
  • Time-of-flight mobility
  • Delocalized charge transport
  • Electric field dependence of mobility
  • Effective-medium approximation