Preparation of polypyrrole/multi-walled carbon nanotube hybrids by electropolymerization combined with a coating method for counter electrodes in dye-sensitized solar cells

Abstract

In this work, multi-wall carbon nanotubes coated with polypyrrole (PPy/MWCNT) have been used as counter electrode (CE) materials for dye-sensitized solar cells (DSSCs). PPy was deposited onto fluorine-doped tin-oxide-coated glass by electrochemical polymerization of pyrrole. Three surfactants were used in the preparation of the hybrids: cationic cetyltrimethylammonium bromide, anionic sodium dodecylbenzenesulfonate (DBSNa), and non-ionic polyoxyethylene sorbitan monolaurate (Tween20). The morphologies of the PPy and PPy/MWCNT hybrids were investigated using scanning electron spectroscopy. Chemical composition of the prepared CEs was determined by X-ray photoelectron spectroscopy and Fourier-transformed infrared spectroscopy. The catalytic activity of the PPy and PPy/MWCNT layers was evaluated using cyclic voltammetry, and the photovoltaic properties of DSSCs with PPy and PPy/MWCNT CEs were characterized using IV measurements. PPy/MWCNT samples that were prepared by electrochemical polymerization showed the best results when the anionic surfactant DBSNa was used during polymerization. The photoelectric conversion efficiency of PPy/MWCNT prepared by electrochemical polymerization was 2.9%, which was 59% of that of Pt CE (4.9%).

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

References

  1. Bu C, Tai Q, Liu Y et al (2013) A transparent and stable polypyrrole counter electrode for dye-sensitized solar cell. J Power Sources 221:78–83. https://doi.org/10.1016/j.jpowsour.2012.07.117

    Article  CAS  Google Scholar 

  2. Chiu I-T, Li C-T, Lee C-P et al (2016) Nanoclimbing-wall-like CoSe2/carbon composite film for the counter electrode of a highly efficient dye-sensitized solar cell: a study on the morphology control. Nano Energy 22:594–606. https://doi.org/10.1016/J.NANOEN.2016.02.060

    Article  CAS  Google Scholar 

  3. Freitag M, Teuscher J, Saygili Y et al (2017) Dye-sensitized solar cells for efficient power generation under ambient lighting. Nat Photonics 11:372–378. https://doi.org/10.1038/nphoton.2017.60

    Article  CAS  Google Scholar 

  4. Gemeiner P, Mikula M (2015) The relation between TiO2 nano-pastes rheology and dye sensitized solar cell photoanode efficiency. Mater Sci Semicond Process 30:605–611. https://doi.org/10.1016/j.mssp.2014.11.005

    Article  CAS  Google Scholar 

  5. Gemeiner P, Kuliček J, Mikula M et al (2015) Polypyrrole-coated multi-walled carbon nanotubes for the simple preparation of counter electrodes in dye-sensitized solar cells. Synth Met 210:323–331. https://doi.org/10.1016/j.synthmet.2015.10.020

    Article  CAS  Google Scholar 

  6. Gemeiner P, Peřinka N, Švorc Ľ et al (2017) Pt-free counter electrodes based on modified screen-printed PEDOT:PSS catalytic layers for dye–sensitized solar cells. Mater Sci Semicond Process 66:162–169. https://doi.org/10.1016/J.MSSP.2017.04.021

    Article  CAS  Google Scholar 

  7. Gribkova O, Omelchenko O, Trchová M et al (2013) Preparation of polyaniline in the presence of polymeric sulfonic acids mixtures: the role of intermolecular interactions between polyacids. Chem Pap 67:952–960. https://doi.org/10.2478/s11696-013-0384-y

    Article  CAS  Google Scholar 

  8. Hagfeldt A, Graetzel M (1995) Light-induced redox reactions in nanocrystalline systems. Chem Rev 95:49–68. https://doi.org/10.1021/cr00033a003

    Article  CAS  Google Scholar 

  9. Hagfeldt A, Boschloo G, Sun L et al (2010) Dye-sensitized solar cells. Chem Rev 110:6595–6663. https://doi.org/10.1021/cr900356p

    Article  CAS  PubMed  Google Scholar 

  10. He B, Tang Q, Luo J et al (2014) Rapid charge-transfer in polypyrrole-single wall carbon nanotube complex counter electrodes: improved photovoltaic performances of dye-sensitized solar cells. J Power Sources 256:170–177. https://doi.org/10.1016/j.jpowsour.2014.01.072

    Article  CAS  Google Scholar 

  11. Hernández-Ferrer J, Ansón-Casaos A, Martínez MT (2012) Electrochemical synthesis and characterization of single-walled carbon nanotubes/polypyrrole films on transparent substrates. Electrochim Acta 64:1–9. https://doi.org/10.1016/j.electacta.2011.11.075

    Article  CAS  Google Scholar 

  12. Hou W, Xiao Y, Han G, Zhou H (2016) Electro-polymerization of polypyrrole/multi-wall carbon nanotube counter electrodes for use in platinum-free dye-sensitized solar cells. Electrochim Acta 190:720–728. https://doi.org/10.1016/j.electacta.2016.01.012

    Article  CAS  Google Scholar 

  13. Kilic B, Turkdogan S (2017) Fabrication of dye-sensitized solar cells using graphene sandwiched 3D-ZnO nanostructures based photoanode and Pt-free pyrite counter electrode. Mater Lett 193:195–198. https://doi.org/10.1016/J.MATLET.2017.01.128

    Article  CAS  Google Scholar 

  14. Lee WJ, Ramasamy E, Lee DY, Song JS (2007) Dye-sensitized solar cells: scale up and current–voltage characterization. Sol Energy Mater Sol Cells 91:1676–1680. https://doi.org/10.1016/J.SOLMAT.2007.05.022

    Article  CAS  Google Scholar 

  15. Lu M-Y, Tsai C-Y, Chen H-A et al (2016) Plasmonic enhancement of Au nanoparticle—embedded single-crystalline ZnO nanowire dye-sensitized solar cells. Nano Energy 20:264–271. https://doi.org/10.1016/J.NANOEN.2015.12.026

    Article  CAS  Google Scholar 

  16. Luo J, Niu HJ, Wen HL et al (2013) Enhancement of the efficiency of dye-sensitized solar cell with multi-wall carbon nanotubes/polypyrrole composite counter electrodes prepared by electrophoresis/electrochemical polymerization. Mater Res Bull 48:988–994. https://doi.org/10.1016/j.materresbull.2012.11.092

    Article  CAS  Google Scholar 

  17. Makris T, Dracopoulos V, Stergiopoulos T, Lianos P (2011) A quasi solid-state dye-sensitized solar cell made of polypyrrole counter electrodes. Electrochim Acta 56:2004–2008. https://doi.org/10.1016/j.electacta.2010.11.076

    Article  CAS  Google Scholar 

  18. Mičušík M, Omastová M, Boukerma K et al (2007) Preparation, surface chemistry, and electrical conductivity of novel silicon carbide/polypyrrole composites containing an anionic surfactant. Polym Eng Sci 47:1198–1206. https://doi.org/10.1002/pen.20690

    Article  CAS  Google Scholar 

  19. Oregan B, Gratzel M (1991) A low-cost, high-efficiency solar-cell based on dye-sensitized colloidal TiO2 films. Nature 353:737–740. https://doi.org/10.1038/353737a0

    Article  CAS  Google Scholar 

  20. Peng S, Wu Y, Zhu P et al (2011) Facile fabrication of polypyrrole/functionalized multiwalled carbon nanotubes composite as counter electrodes in low-cost dye-sensitized solar cells. J Photochem Photobiol A Chem 223:97–102. https://doi.org/10.1016/j.jphotochem.2011.08.004

    Article  CAS  Google Scholar 

  21. Tavoli F, Alizadeh N (2015) Enhancement effect of transition metal cations on the electrochromic properties of nanostructure tiron doped polypyrrole film. J Electroanal Chem 746:39–44. https://doi.org/10.1016/j.jelechem.2015.03.020

    Article  CAS  Google Scholar 

  22. Veerender P, Saxena V, Jha P et al (2012) Free-standing polypyrrole films as substrate-free and Pt-free counter electrodes for quasi-solid dye-sensitized solar cells. Org Electron Phys Mater Appl 13:3032–3039. https://doi.org/10.1016/j.orgel.2012.08.039

    CAS  Article  Google Scholar 

  23. Vijayakumar P, Senthil Pandian M, Pandikumar A, Ramasamy P (2017) A facile one-step synthesis and fabrication of hexagonal palladium-carbon nanocubes (H-Pd/C NCs) and their application as an efficient counter electrode for dye-sensitized solar cell (DSSC). Ceram Int 43:8466–8474. https://doi.org/10.1016/J.CERAMINT.2017.03.198

    Article  CAS  Google Scholar 

  24. Wang WY, Ting PN, Luo SH, Lin JY (2014) Pulse-reversal electropolymerization of polypyrrole on functionalized carbon nanotubes as composite counter electrodes in dye-sensitized solar cells. Electrochim Acta 137:721–727. https://doi.org/10.1016/j.electacta.2014.06.028

    Article  CAS  Google Scholar 

  25. Wei D (2010) Dye sensitized solar cells. Int J Mol Sci 11:1103–1113. https://doi.org/10.3390/ijms11031103

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Weng B, Shepherd RL, Crowley K et al (2010) Printing conducting polymers. Analyst 135:2779–2789. https://doi.org/10.1039/c0an00302f

    Article  CAS  PubMed  Google Scholar 

  27. Wu M, Ma T (2012) Platinum-free catalysts as counter electrodes in dye-sensitized solar cells. ChemSusChem 5:1343–1357. https://doi.org/10.1002/cssc.201100676

    Article  CAS  PubMed  Google Scholar 

  28. Wu J, Li Q, Fan L et al (2008) High-performance polypyrrole nanoparticles counter electrode for dye-sensitized solar cells. J Power Sources 181:172–176. https://doi.org/10.1016/j.jpowsour.2008.03.029

    Article  CAS  Google Scholar 

  29. Würfel P (2009) Physics of solar cells, 2nd edn. Wiley-CH, Weinheim

    Google Scholar 

  30. Würfel U, Peters M, Hinsch A (2008) Detailed experimental and theoretical investigation of the electron transport in a dye solar cell by means of a three-electrode configuration. J Phys Chem C 112:1711–1720. https://doi.org/10.1021/jp077016x

    Article  CAS  Google Scholar 

  31. Ye M, Wen X, Wang M et al (2015) Recent advances in dye-sensitized solar cells: from photoanodes, sensitizers and electrolytes to counter electrodes. Mater Today 18:155–162. https://doi.org/10.1016/j.mattod.2014.09.001

    Article  CAS  Google Scholar 

  32. Yen Y-S, Chou H-H, Chen Y-C et al (2012) Recent developments in molecule-based organic materials for dye-sensitized solar cells. J Mater Chem 22:8734. https://doi.org/10.1039/c2jm30362k

    Article  CAS  Google Scholar 

  33. Yu Y, Zheng H, Zhang X et al (2016) An efficient dye-sensitized solar cell with a promising material of Bi4Ti3O12 nanofibers/graphene. Electrochim Acta 215:543–549. https://doi.org/10.1016/J.ELECTACTA.2016.08.086

    Article  CAS  Google Scholar 

  34. Yue G, Wang L, Zhang X et al (2014a) Fabrication of high performance multi-walled carbon nanotubes/polypyrrole counter electrode for dye-sensitized solar cells. Energy 67:460–467. https://doi.org/10.1016/j.energy.2014.01.058

    Article  CAS  Google Scholar 

  35. Yue G, Zhang X, Wang L et al (2014b) Highly efficient and stable dye-sensitized solar cells based on nanographite/polypyrrole counter electrode. Electrochim Acta 129:229–236. https://doi.org/10.1016/j.electacta.2014.02.109

    Article  CAS  Google Scholar 

  36. Zerbi G, Gussoni M, Castiglioni C (1991) Vibrational spectroscopy of polyconjugated aromatic materials with electrical and non linear optical properties. Conjug Polym. Springer, Dordrecht, pp 435–507

    Google Scholar 

  37. Zheng HW, Liang X, Yu YH et al (2017) Bi5FeTi3O15 nanofibers/graphene nanocomposites as an effective counter electrode for dye-sensitized solar cells. Nanoscale Res Lett 12:18. https://doi.org/10.1186/s11671-016-1799-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the Slovak Grant Agency, projects VEGA 1/0900/16 and VEGA 2/0010/18, bilateral projects SAS-TÜBITAK JRP 2014/2, project KONNECT, Korea V4 PLL and COST project MP 1307 and by the STU Grant scheme for Support of Excellent Teams of Young Researchers.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jaroslav Kuliček.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 13 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuliček, J., Gemeiner, P., Omastová, M. et al. Preparation of polypyrrole/multi-walled carbon nanotube hybrids by electropolymerization combined with a coating method for counter electrodes in dye-sensitized solar cells. Chem. Pap. 72, 1651–1667 (2018). https://doi.org/10.1007/s11696-018-0476-9

Download citation

Keywords

  • Dye-sensitized solar cell
  • Counter electrode
  • Polypyrrole
  • Multi-walled carbon nanotubes
  • Electrochemical deposition