Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

Abstract

Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Albrecht S et al (2012) On the field dependence of free charge carrier generation and recombination in blends of PCPDTBT/PC70BM: influence of solvent additives. J Phys Chem Lett 3:640–645. https://doi.org/10.1021/jz3000849

    Article  CAS  PubMed  Google Scholar 

  2. Allemand P et al (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113:1050–1051

    Article  CAS  Google Scholar 

  3. Bicciocchi E, Haeussler M, Rizzardo E, Scully AD, Ghiggino KP (2015) Donor-acceptor rod-coil block copolymers comprising Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and fullerene as compatibilizers for organic photovoltaic devices. J Polymer Scie Part A Polymer Chem 53:888–903. https://doi.org/10.1002/pola.27514

    Article  CAS  Google Scholar 

  4. Cann J, Dayneko S, Sun JP, Hendsbee AD, Hill IG, Welch GC (2017a) N-Annulated perylene diimide dimers: acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties. J Mater Chem C 5:2074–2083. https://doi.org/10.1039/c6tc05107c

    Article  CAS  Google Scholar 

  5. Cann JR, Cabanetos C, Welch GC (2017b) Spectroscopic engineering toward near-infrared absorption of materials containing perylene diimide. ChemPlusChem 82:1359–1364. https://doi.org/10.1002/cplu.201700502

    Article  CAS  Google Scholar 

  6. Cao WR, Xue JG (2014) Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci 7:2123–2144. https://doi.org/10.1039/c4ee00260a

    Article  CAS  Google Scholar 

  7. Dayneko SV, Hendsbee AD, Welch GC (2017) Fullerene-free polymer solar cells processed from non-halogenated solvents in air with PCE of 4.8%. Chem Commun 53:1164–1167. https://doi.org/10.1039/c6cc08939a

    Article  CAS  Google Scholar 

  8. Eftaiha AF, Sun JP, Hill IG, Welch GC (2014) Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J Mater Chem A 2:1201–1213. https://doi.org/10.1039/c3ta14236a

    Article  CAS  Google Scholar 

  9. Egbe DAM et al (2010) Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains. J Mater Chem 20:9726–9734. https://doi.org/10.1039/C0JM01482F

    Article  CAS  Google Scholar 

  10. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338

    Article  CAS  PubMed  Google Scholar 

  11. Holdren JP (1991) Population and the energy problem. Popul Environ 12:231–255. https://doi.org/10.1007/bf01357916

    Article  Google Scholar 

  12. Howard IA, Etzold F, Laquai F, Kemerink M (2014) Nonequilibrium charge dynamics in organic solar cells. Adv Energy Mater 4:9. https://doi.org/10.1002/aenm.201301743

    CAS  Article  Google Scholar 

  13. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538

    Article  CAS  Google Scholar 

  14. IEA (2015) World Energy Outlook. International Energy Agency 9 rue de la Fédération 75739 Paris Cedex 15, France

    Google Scholar 

  15. Kastner C, Muhsin B, Wild A, Egbe DAM, Rathgeber S, Hoppe H (2013) Improved phase separation in polymer solar cells by solvent blending. J Polymer Sci Part B Polymer Phys 51:868–874. https://doi.org/10.1002/polb.23286

    Article  CAS  Google Scholar 

  16. Kastner C, Egbe DAM, Hoppe H (2015) Polymer aggregation control in polymer-fullerene bulk heterojunctions adapted from solution. J Mater Chem A 3:395–403. https://doi.org/10.1039/c4ta04736b

    Article  CAS  Google Scholar 

  17. Kivrak A, Calis H, Topal Y, Kivrak H, Kus M (2017a) Synthesis of thiophenyl-substituted unsymmetrical anthracene derivatives and investigation of their electrochemical and electrooptical properties. Sol Energy Mater Sol Cells 161:31–37. https://doi.org/10.1016/j.solmat.2016.11.006

    Article  CAS  Google Scholar 

  18. Kivrak A, Er OF, Kivrak H, Topal Y, Kus M, Camlisoy Y (2017b) Synthesis and solar-cell applications of novel furanyl-substituted anthracene derivatives. Opt Mater 73:206–212. https://doi.org/10.1016/j.optmat.2017.08.014

    Article  CAS  Google Scholar 

  19. Kniepert J, Schubert M, Blakesley JC, Neher D (2011) Photogeneration and Recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments. J Phys Chem Lett 2:700–705. https://doi.org/10.1021/jz200155b

    Article  CAS  Google Scholar 

  20. Kniepert J, Lange I, van der Kaap NJ, Koster LJA, Neher D (2014) A Conclusive view on charge generation, recombination, and extraction in as-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work. Adv Energy Mater 4 https://doi.org/10.1002/aenm.201301401

  21. Kozma E, Catellani M (2013) Perylene diimides based materials for organic solar cells. Dyes Pigm 98:160–179. https://doi.org/10.1016/j.dyepig.2013.01.020

    Article  CAS  Google Scholar 

  22. Krebs FC, Nielsen TD, Fyenbo J, Wadstrøm M, Pedersen MS (2010) Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ Sci 3:512–525

    Article  CAS  Google Scholar 

  23. Liang N, Jiang W, Hou J, Wang Z (2017) New developments in non-fullerene small molecule acceptors for polymer solar cells. Mater Chem Front 1:1291–1303. https://doi.org/10.1039/C6QM00247A

    Article  CAS  Google Scholar 

  24. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174. https://doi.org/10.1002/adma.201404317

    Article  CAS  Google Scholar 

  25. Liu ZT, Wu Y, Zhang Q, Gao X (2016) Non-fullerene small molecule acceptors based on perylene diimides. J Mater Chem A 4:17604–17622. https://doi.org/10.1039/c6ta06978a

    Article  CAS  Google Scholar 

  26. McAfee SM, Topple JM, Hill IG, Welch GC (2015) Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors. J Mater Chem A 3:16393–16408. https://doi.org/10.1039/c5ta04310g

    Article  CAS  Google Scholar 

  27. McAfee SM, Dayneko SV, Josse P, Blanchard P, Cabanetos C, Welch GC (2017) Simply Complex: the efficient synthesis of an intricate molecular acceptor for high-performance air-processed and air-tested fullerene-free organic solar cells. Chem Mater 29:1309–1314. https://doi.org/10.1021/acs.chemmater.6b04862

    Article  CAS  Google Scholar 

  28. Mulligan CJ, Wilson M, Bryant G, Vaughan B, Zhou X, Belcher WJ, Dastoor PC (2014) A projection of commercial-scale organic photovoltaic module costs. Sol Energy Mater Sol Cells 120:9–17

    Article  CAS  Google Scholar 

  29. Namazian M, Lin CY, Coote ML (2010) Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions. J Chem Theory Comput 6:2721–2725. https://doi.org/10.1021/ct1003252

    Article  CAS  PubMed  Google Scholar 

  30. Nielsen CB, Holliday S, Chen H-Y, Cryer SJ, McCulloch I (2015) Non-fullerene electron acceptors for use in organic solar cells. Acc Chem Res 48:2803–2812. https://doi.org/10.1021/acs.accounts.5b00199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Ren G, Ahmed E, Jenekhe SA (2011) Non-fullerene acceptor-based bulk heterojunction polymer solar cells: engineering the nanomorphology via processing additives. Adv Energy Mater 1:946–953. https://doi.org/10.1002/aenm.201100285

    Article  CAS  Google Scholar 

  32. Singh TB et al (2005) High-mobility n-channel organic field-effect transistors based on epitaxially grown C 60 films. Org Electron 6:105–110

    Article  CAS  Google Scholar 

  33. Sonar P, Lim JPF, Chan KL (2011) Organic non-fullerene acceptors for organic photovoltaics Energy. Environ Sci 4:1558–1574

    CAS  Google Scholar 

  34. Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77

    Article  CAS  Google Scholar 

  35. Wadsworth A et al (2017) Highly efficient and reproducible nonfullerene solar cells from hydrocarbon solvents. ACS Energy Lett 2:1494–1500. https://doi.org/10.1021/acsenergylett.7b00390

    Article  CAS  Google Scholar 

  36. Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem 115:3493–3497

    Article  Google Scholar 

  37. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148–7151

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SA, VON, and HH are grateful for financial support via DFG in the frame of “PhotoGenOrder”.

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Shahidul Alam or Harald Hoppe.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Alam, S., Meitzner, R., Nwadiaru, O.V. et al. Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors. Chem. Pap. 72, 1769–1778 (2018). https://doi.org/10.1007/s11696-018-0466-y

Download citation

Keywords

  • Non-fullerene acceptors (NFA)
  • Bulk-heterojunction (BHJ)
  • Organic solar cell (OSC)