Organic solar cells based on anthracene-containing PPE–PPVs and non-fullerene acceptors

  • Shahidul Alam
  • Rico Meitzner
  • Ogechi V. Nwadiaru
  • Christian Friebe
  • Jonathan Cann
  • Johannes Ahner
  • Christoph Ulbricht
  • Zhipeng Kan
  • Stephanie Höppener
  • Martin D. Hager
  • Daniel A. M. Egbe
  • Gregory C. Welch
  • Frédéric Laquai
  • Ulrich S. Schubert
  • Harald Hoppe
Original Paper
  • 51 Downloads

Abstract

Lately, non-fullerene acceptors (NFAs) have received increasing attention for use in polymer-based bulk-heterojunction (BHJ) organic solar cells (OSCs), as improved photovoltaic performance compared to classical polymer–fullerene blends could be demonstrated. In this study, polymer solar cells based on a statistically substituted anthracene-containing poly(p-phenylene ethynylene)-alt-poly(p-phenylene vinylene)s (PPE–PPVs) copolymer (AnE-PVstat) as donor in combination with a number of different electron accepting materials were investigated. Strong photoluminescence quenching of the polymer donor indicates intimate intermixing of both materials. However, the photovoltaic performances were found to be poor compared to blends that use fullerene as acceptor. Time-delayed collection field (TDCF) measurements demonstrate: charge generation is field-independent, but bimolecular recombination processes limit the fill factor and thus the efficiency of devices.

Keywords

Non-fullerene acceptors (NFA) Bulk-heterojunction (BHJ) Organic solar cell (OSC) 

Notes

Acknowledgements

SA, VON, and HH are grateful for financial support via DFG in the frame of “PhotoGenOrder”.

References

  1. Albrecht S et al (2012) On the field dependence of free charge carrier generation and recombination in blends of PCPDTBT/PC70BM: influence of solvent additives. J Phys Chem Lett 3:640–645.  https://doi.org/10.1021/jz3000849 CrossRefGoogle Scholar
  2. Allemand P et al (1991) Two different fullerenes have the same cyclic voltammetry. J Am Chem Soc 113:1050–1051CrossRefGoogle Scholar
  3. Bicciocchi E, Haeussler M, Rizzardo E, Scully AD, Ghiggino KP (2015) Donor-acceptor rod-coil block copolymers comprising Poly[2,7-(9,9-dihexylfluorene)-alt-bithiophene] and fullerene as compatibilizers for organic photovoltaic devices. J Polymer Scie Part A Polymer Chem 53:888–903.  https://doi.org/10.1002/pola.27514 CrossRefGoogle Scholar
  4. Cann J, Dayneko S, Sun JP, Hendsbee AD, Hill IG, Welch GC (2017a) N-Annulated perylene diimide dimers: acetylene linkers as a strategy for controlling structural conformation and the impact on physical, electronic, optical and photovoltaic properties. J Mater Chem C 5:2074–2083.  https://doi.org/10.1039/c6tc05107c CrossRefGoogle Scholar
  5. Cann JR, Cabanetos C, Welch GC (2017b) Spectroscopic engineering toward near-infrared absorption of materials containing perylene diimide. ChemPlusChem 82:1359–1364.  https://doi.org/10.1002/cplu.201700502 CrossRefGoogle Scholar
  6. Cao WR, Xue JG (2014) Recent progress in organic photovoltaics: device architecture and optical design. Energy Environ Sci 7:2123–2144.  https://doi.org/10.1039/c4ee00260a CrossRefGoogle Scholar
  7. Dayneko SV, Hendsbee AD, Welch GC (2017) Fullerene-free polymer solar cells processed from non-halogenated solvents in air with PCE of 4.8%. Chem Commun 53:1164–1167.  https://doi.org/10.1039/c6cc08939a CrossRefGoogle Scholar
  8. Eftaiha AF, Sun JP, Hill IG, Welch GC (2014) Recent advances of non-fullerene, small molecular acceptors for solution processed bulk heterojunction solar cells. J Mater Chem A 2:1201–1213.  https://doi.org/10.1039/c3ta14236a CrossRefGoogle Scholar
  9. Egbe DAM et al (2010) Improvement in carrier mobility and photovoltaic performance through random distribution of segments of linear and branched side chains. J Mater Chem 20:9726–9734.  https://doi.org/10.1039/C0JM01482F CrossRefGoogle Scholar
  10. Günes S, Neugebauer H, Sariciftci NS (2007) Conjugated polymer-based organic solar cells. Chem Rev 107:1324–1338CrossRefGoogle Scholar
  11. Holdren JP (1991) Population and the energy problem. Popul Environ 12:231–255.  https://doi.org/10.1007/bf01357916 CrossRefGoogle Scholar
  12. Howard IA, Etzold F, Laquai F, Kemerink M (2014) Nonequilibrium charge dynamics in organic solar cells. Adv Energy Mater 4:9.  https://doi.org/10.1002/aenm.201301743 Google Scholar
  13. Hummelen JC, Knight BW, LePeq F, Wudl F, Yao J, Wilkins CL (1995) Preparation and characterization of fulleroid and methanofullerene derivatives. J Org Chem 60:532–538CrossRefGoogle Scholar
  14. IEA (2015) World Energy Outlook. International Energy Agency 9 rue de la Fédération 75739 Paris Cedex 15, FranceGoogle Scholar
  15. Kastner C, Muhsin B, Wild A, Egbe DAM, Rathgeber S, Hoppe H (2013) Improved phase separation in polymer solar cells by solvent blending. J Polymer Sci Part B Polymer Phys 51:868–874.  https://doi.org/10.1002/polb.23286 CrossRefGoogle Scholar
  16. Kastner C, Egbe DAM, Hoppe H (2015) Polymer aggregation control in polymer-fullerene bulk heterojunctions adapted from solution. J Mater Chem A 3:395–403.  https://doi.org/10.1039/c4ta04736b CrossRefGoogle Scholar
  17. Kivrak A, Calis H, Topal Y, Kivrak H, Kus M (2017a) Synthesis of thiophenyl-substituted unsymmetrical anthracene derivatives and investigation of their electrochemical and electrooptical properties. Sol Energy Mater Sol Cells 161:31–37.  https://doi.org/10.1016/j.solmat.2016.11.006 CrossRefGoogle Scholar
  18. Kivrak A, Er OF, Kivrak H, Topal Y, Kus M, Camlisoy Y (2017b) Synthesis and solar-cell applications of novel furanyl-substituted anthracene derivatives. Opt Mater 73:206–212.  https://doi.org/10.1016/j.optmat.2017.08.014 CrossRefGoogle Scholar
  19. Kniepert J, Schubert M, Blakesley JC, Neher D (2011) Photogeneration and Recombination in P3HT/PCBM solar cells probed by time-delayed collection field experiments. J Phys Chem Lett 2:700–705.  https://doi.org/10.1021/jz200155b CrossRefGoogle Scholar
  20. Kniepert J, Lange I, van der Kaap NJ, Koster LJA, Neher D (2014) A Conclusive view on charge generation, recombination, and extraction in as-prepared and annealed P3HT:PCBM blends: combined experimental and simulation work. Adv Energy Mater 4  https://doi.org/10.1002/aenm.201301401
  21. Kozma E, Catellani M (2013) Perylene diimides based materials for organic solar cells. Dyes Pigm 98:160–179.  https://doi.org/10.1016/j.dyepig.2013.01.020 CrossRefGoogle Scholar
  22. Krebs FC, Nielsen TD, Fyenbo J, Wadstrøm M, Pedersen MS (2010) Manufacture, integration and demonstration of polymer solar cells in a lamp for the “Lighting Africa” initiative. Energy Environ Sci 3:512–525CrossRefGoogle Scholar
  23. Liang N, Jiang W, Hou J, Wang Z (2017) New developments in non-fullerene small molecule acceptors for polymer solar cells. Mater Chem Front 1:1291–1303.  https://doi.org/10.1039/C6QM00247A CrossRefGoogle Scholar
  24. Lin Y, Wang J, Zhang Z-G, Bai H, Li Y, Zhu D, Zhan X (2015) An electron acceptor challenging fullerenes for efficient polymer solar cells. Adv Mater 27:1170–1174.  https://doi.org/10.1002/adma.201404317 CrossRefGoogle Scholar
  25. Liu ZT, Wu Y, Zhang Q, Gao X (2016) Non-fullerene small molecule acceptors based on perylene diimides. J Mater Chem A 4:17604–17622.  https://doi.org/10.1039/c6ta06978a CrossRefGoogle Scholar
  26. McAfee SM, Topple JM, Hill IG, Welch GC (2015) Key components to the recent performance increases of solution processed non-fullerene small molecule acceptors. J Mater Chem A 3:16393–16408.  https://doi.org/10.1039/c5ta04310g CrossRefGoogle Scholar
  27. McAfee SM, Dayneko SV, Josse P, Blanchard P, Cabanetos C, Welch GC (2017) Simply Complex: the efficient synthesis of an intricate molecular acceptor for high-performance air-processed and air-tested fullerene-free organic solar cells. Chem Mater 29:1309–1314.  https://doi.org/10.1021/acs.chemmater.6b04862 CrossRefGoogle Scholar
  28. Mulligan CJ, Wilson M, Bryant G, Vaughan B, Zhou X, Belcher WJ, Dastoor PC (2014) A projection of commercial-scale organic photovoltaic module costs. Sol Energy Mater Sol Cells 120:9–17CrossRefGoogle Scholar
  29. Namazian M, Lin CY, Coote ML (2010) Benchmark calculations of absolute reduction potential of ferricinium/ferrocene couple in nonaqueous solutions. J Chem Theory Comput 6:2721–2725.  https://doi.org/10.1021/ct1003252 CrossRefGoogle Scholar
  30. Nielsen CB, Holliday S, Chen H-Y, Cryer SJ, McCulloch I (2015) Non-fullerene electron acceptors for use in organic solar cells. Acc Chem Res 48:2803–2812.  https://doi.org/10.1021/acs.accounts.5b00199 CrossRefGoogle Scholar
  31. Ren G, Ahmed E, Jenekhe SA (2011) Non-fullerene acceptor-based bulk heterojunction polymer solar cells: engineering the nanomorphology via processing additives. Adv Energy Mater 1:946–953.  https://doi.org/10.1002/aenm.201100285 CrossRefGoogle Scholar
  32. Singh TB et al (2005) High-mobility n-channel organic field-effect transistors based on epitaxially grown C 60 films. Org Electron 6:105–110CrossRefGoogle Scholar
  33. Sonar P, Lim JPF, Chan KL (2011) Organic non-fullerene acceptors for organic photovoltaics Energy. Environ Sci 4:1558–1574Google Scholar
  34. Thompson BC, Fréchet JM (2008) Polymer–fullerene composite solar cells. Angew Chem Int Ed 47:58–77CrossRefGoogle Scholar
  35. Wadsworth A et al (2017) Highly efficient and reproducible nonfullerene solar cells from hydrocarbon solvents. ACS Energy Lett 2:1494–1500.  https://doi.org/10.1021/acsenergylett.7b00390 CrossRefGoogle Scholar
  36. Wienk MM, Kroon JM, Verhees WJ, Knol J, Hummelen JC, van Hal PA, Janssen RA (2003) Efficient methano [70] fullerene/MDMO-PPV bulk heterojunction photovoltaic cells. Angew Chem 115:3493–3497CrossRefGoogle Scholar
  37. Zhao W, Li S, Yao H, Zhang S, Zhang Y, Yang B, Hou J (2017) Molecular optimization enables over 13% efficiency in organic solar cells. J Am Chem Soc 139:7148–7151CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Shahidul Alam
    • 1
    • 2
  • Rico Meitzner
    • 1
    • 2
  • Ogechi V. Nwadiaru
    • 1
    • 4
  • Christian Friebe
    • 1
    • 2
  • Jonathan Cann
    • 7
  • Johannes Ahner
    • 2
  • Christoph Ulbricht
    • 5
    • 6
  • Zhipeng Kan
    • 8
  • Stephanie Höppener
    • 2
    • 3
  • Martin D. Hager
    • 1
    • 2
  • Daniel A. M. Egbe
    • 5
    • 6
  • Gregory C. Welch
    • 7
  • Frédéric Laquai
    • 8
  • Ulrich S. Schubert
    • 1
    • 2
  • Harald Hoppe
    • 1
    • 2
  1. 1.Center for Energy and Environmental Chemistry Jena (CEEC Jena)Friedrich Schiller University JenaJenaGermany
  2. 2.Laboratory of Organic and Macromolecular Chemistry (IOMC)Friedrich Schiller University JenaJenaGermany
  3. 3.Jena Center for Soft Matter (JCSM)JenaGermany
  4. 4.Institute of Water and Energy Sciences (Including Climate Change)-PAUWESPan African UniversityTlemcenAlgeria
  5. 5.Linz Institute for Organic Solar Cells (LIOS)Johannes Kepler University LinzLinzAustria
  6. 6.Institute of Polymeric Materials and TestingJohannes Kepler UniversityLinzAustria
  7. 7.Department of ChemistryUniversity of CalgaryCalgaryCanada
  8. 8.Physical Sciences and Engineering Division (PSE), Material Science and Engineering (MSE), Solar and Photovoltaics Engineering Research Center (SPERC)King Abdullah University of Science and Technology (KAUST)ThuwalKingdom of Saudi Arabia

Personalised recommendations