Advertisement

Chemical Papers

, Volume 72, Issue 7, pp 1753–1759 | Cite as

Effect of the introduction of an alcohol-soluble conjugated polyelectrolyte as cathode interlayer in solution-processed organic light-emitting diodes and photovoltaic devices

  • Francesco Carulli
  • Wojciech Mróz
  • Elisa Lassi
  • Cristina Sandionigi
  • Benedetta Squeo
  • Lorenzo Meazza
  • Guido Scavia
  • Silvia Luzzati
  • Mariacecila Pasini
  • Umberto Giovanella
  • Francesco Galeotti
Original Article

Abstract

Interfacial engineering provides an important tool for optimizing the performances of optoelectronic devices. We show that poly[(2,7-(9,9′-dioctyl)fluorene)-alt-(2,7-(9,9′-bis(5″-trimethylammonium bromide)pentyl)fluorene)])], an alcohol-soluble π-conjugated polymer based on polyfluorene backbone and ammonium groups on the alkyl side chains, is capable of modifying the interface between the organic layer and the metal cathode in both organic solar cells and light-emitting diodes based on commercial materials and conventional architectures, improving their performances. The introduction of the cathode interlayer enhances the efficiency of a red-emitting phosphorescent OLED by 15% and decreases its turn-on voltage. The same polymer improves the power conversion efficiency of a PTB7/PC71BM solar cell by 55% and shows a beneficial effect in terms of device stability.

Keywords

OLEDs OPV Cathode interlayer Polyelectrolytes Device optimization Solution processable devices 

Notes

Acknowledgements

PRIN2015 project “LIFE” prot. n. 20155ACHBN_003, Regione Lombardia-CNR agreement project “I-ZEB”, and scientific cooperation agreement between CNR and RAS (project Giovanella/Khotina) are acknowledged.

References

  1. Castelli A, Meinardi F, Pasini M, Galeotti F, Pinchetti V, Lorenzon M, Manna L, Moreels I, Giovanella U, Brovelli S (2015) High-efficiency all-solution-processed light-emitting diodes based on anisotropic colloidal heterostructures with polar polymer injecting layers. Nano Lett 15(8):5455–5464.  https://doi.org/10.1021/acs.nanolett.5b01849 CrossRefPubMedGoogle Scholar
  2. Chueh C-C, Li C-Z, Jen AKY (2015) Recent progress and perspective in solution-processed Interfacial materials for efficient and stable polymer and organometal perovskite solar cells. Energy Environ Sci 8(4):1160–1189.  https://doi.org/10.1039/c4ee03824j CrossRefGoogle Scholar
  3. Cui Y, Yang C, Yao H, Zhu J, Wang Y, Jia G, Gao F, Hou J (2017) Efficient semitransparent organic solar cells with tunable color enabled by an ultralow-bandgap nonfullerene acceptor. Adv Mater.  https://doi.org/10.1002/adma.201703080 CrossRefPubMedGoogle Scholar
  4. Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv Mater 21(13):1323–1338.  https://doi.org/10.1002/adma.200801283 CrossRefGoogle Scholar
  5. Edman L, Pauchard M, Liu B, Bazan G, Moses D, Heeger AJ (2003) Single-component light-emitting electrochemical cell with improved stability. Appl Phys Lett 82(22):3961–3963.  https://doi.org/10.1063/1.1577387 CrossRefGoogle Scholar
  6. Garcia A, Yang R, Jin Y, Walker B, Nguyen T-Q (2007) Structure-function relationships of conjugated polyelectrolyte electron injection layers in polymer light emitting diodes. Appl Phys Lett 91(15):153502.  https://doi.org/10.1063/1.2794422 CrossRefGoogle Scholar
  7. Giovanella U, Cariati E, Lucenti E, Pasini M, Galeotti F, Botta C (2017) In Situ electroluminescence color tuning by thermal deprotonation suitable for thermal sensors and anti-fraud labels. ChemPhysChem 18(16):2157–2161.  https://doi.org/10.1002/cphc.201700185 CrossRefPubMedGoogle Scholar
  8. He Z, Wu H, Cao Y (2014) Recent advances in polymer solar cells: realization of high device performance by incorporating water/alcohol-soluble conjugated polymers as electrode buffer layer. Adv Mater 26(7):1006–1024.  https://doi.org/10.1002/adma.201303391 CrossRefPubMedGoogle Scholar
  9. Huang F, Wu H, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16(4):708–716.  https://doi.org/10.1021/cm034650o CrossRefGoogle Scholar
  10. Intemann JJ, Yao K, Li Y-X, Yip H-L, Xu Y-X, Liang P-W, Chueh C-C, Ding F-Z, Yang X, Li X, Chen Y, Jen AKY (2014) Highly efficient inverted organic solar cells through material and interfacial engineering of indacenodithieno[3,2-b]thiophene-based polymers and devices. Adv Func Mater 24(10):1465–1473.  https://doi.org/10.1002/adfm.201302426 CrossRefGoogle Scholar
  11. Kamtekar KT, Monkman AP, Bryce MR (2010) Recent advances in white organic light-emitting materials and devices (WOLEDs). Adv Mater 22(5):572–582.  https://doi.org/10.1002/adma.200902148 CrossRefPubMedGoogle Scholar
  12. Kumar A, Lakhwani G, Elmalem E, Huck WTS, Rao A, Greenham NC, Friend RH (2014) Interface limited charge extraction and recombination in organic photovoltaics. Energy Environ Sci 7(7):2227–2231.  https://doi.org/10.1039/c4ee00665h CrossRefGoogle Scholar
  13. Lee BH, Jung IH, Woo HY, Shim HK, Kim G, Lee K (2014) Multi charged conjugated polyelectrolytes as a versatile work function modifier for organic electronic devices. Adv Func Mater 24(8):1100–1108.  https://doi.org/10.1002/adfm.201301810 CrossRefGoogle Scholar
  14. Li YL, Cheng YS, Yeh PN, Liao SH, Chen SA (2014) Structure tuning of crown ether grafted conjugated polymers as the electron transport layer in bulk heterojunction polymer solar cells for high performance. Adv Func Mater 24(43):6811–6817.  https://doi.org/10.1002/adfm.201401428 CrossRefGoogle Scholar
  15. Li S, Zhang H, Zhao W, Ye L, Yao H, Yang B, Zhang S, Hou J (2016) Green solvent processed all polymer solar cells containing a perylene diimide based acceptor with an efficiency over 6.5%. Adv Energy Mater.  https://doi.org/10.1002/aenm.201501991 CrossRefGoogle Scholar
  16. Liu X, Wen W, Bazan GC (2012) Post-deposition treatment of an arylated-carbazole conjugated polymer for solar cell fabrication. Adv Mater 24(33):4505–4510.  https://doi.org/10.1002/adma.201201567 CrossRefPubMedGoogle Scholar
  17. Liu H, Hu L, Wu F, Chen L, Chen Y (2016) Polyfluorene electrolytes interfacial layer for efficient polymer solar cells: controllably interfacial dipoles by regulation of polar groups. ACS Appl Mater Interfaces 8(15):9821–9828.  https://doi.org/10.1021/acsami.6b00637 CrossRefPubMedGoogle Scholar
  18. Luo J, Wu H, He C, Li A, Yang W, Cao Y (2009) Enhanced open-circuit voltage in polymer solar cells. Appl Phys Lett 95(4):043301.  https://doi.org/10.1063/1.3157278 CrossRefGoogle Scholar
  19. Mróz W, Babushkina MA, Kushakova NS, Kovalev AI, Antonova OY, Kaplin VS, Pasini M, Galeotti F, Destri S, Giovanella U (2016) Hyperbranched 3D oligophenylenes for blue electroluminescence. Mendeleev Commun 26(4):347–349.  https://doi.org/10.1016/j.mencom.2016.07.027 CrossRefGoogle Scholar
  20. Nishikitani Y, Inokuchi N, Nishide H, Uchida S, Shibanuma T, Nishimura S (2016) Effect of π-conjugated polyelectrolyte on performance of white polymer light-emitting diodes based on excitons and exciplexes having long intermolecular distances. J Phys Chem C 120(26):13976–13986.  https://doi.org/10.1021/acs.jpcc.6b04413 CrossRefGoogle Scholar
  21. Nishikitani Y, Suga K, Uchida S, Nishimura S, Oyaizu K, Nishide H (2017) High-color-rendering-index white polymer light-emitting electrochemical cells based on ionic host-guest systems: utilization of blend films of blue-fluorescent cationic polyfluorenes and red-phosphorescent cationic iridium complexes. Org Electron 5:168–172.  https://doi.org/10.1016/j.orgel.2017.09.003 CrossRefGoogle Scholar
  22. Song C, Zhong Z, Hu Z, Luo Y, Wang L, Wang J, Cao Y (2017) The effect of solvent treatment on the buried PEDOT:PSS layer. Org Electron 43:9–14.  https://doi.org/10.1016/j.orgel.2016.12.057 CrossRefGoogle Scholar
  23. Sprau C, Buss F, Wagner M, Landerer D, Koppitz M, Schulz A, Bahro D, Schabel W, Scharfer P, Colsmann A (2015) Highly efficient polymer solar cells cast from non-halogenated xylene/anisaldehyde solution. Energy Environ Sci 8(9):2744–2752.  https://doi.org/10.1039/C5EE01917F CrossRefGoogle Scholar
  24. Tan Z-K, Vaynzof Y, Credgington D, Li C, Casford MTL, Sepe A, Huettner S, Nikolka M, Paulus F, Yang L, Sirringhaus H, Greenham NC, Friend RH (2014) In-Situ switching from barrier-limited to ohmic anodes for efficient organic optoelectronics. Adv Func Mater 24(20):3051–3058.  https://doi.org/10.1002/adfm.201303426 CrossRefGoogle Scholar
  25. Tordera D, Kuik M, Rengert ZD, Bandiello E, Bolink HJ, Bazan GC, Nguyen T-Q (2014) Operational mechanism of conjugated polyelectrolytes. J Am Chem Soc 136(24):8500–8503.  https://doi.org/10.1021/ja502055x CrossRefPubMedGoogle Scholar
  26. Udum Y, Denk P, Adam G, Apaydin DH, Nevosad A, Teichert C, White MS, Sariciftci NS, Scharber MC (2014) Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Org Electron 15(5):997–1001.  https://doi.org/10.1016/j.orgel.2014.02.009 CrossRefPubMedPubMedCentralGoogle Scholar
  27. Xia R, Leem D-S, Kirchartz T, Spencer S, Murphy C, He Z, Wu H, Su S, Cao Y, Kim JS, deMello JC, Bradley DDC, Nelson J (2013) Investigation of a conjugated polyelectrolyte interlayer for inverted polymer: fullerene solar cells. Adv Energy Mater 3(6):718–723.  https://doi.org/10.1002/aenm.201200967 CrossRefGoogle Scholar
  28. Yang R, Wu H, Cao Y, Bazan GC (2006) Control of cationic conjugated polymer performance in light emitting diodes by choice of counterion. J Am Chem Soc 128(45):14422–14423.  https://doi.org/10.1021/ja063723c CrossRefPubMedGoogle Scholar
  29. Yang T, Wang M, Duan C, Hu X, Huang L, Peng J, Huang F, Gong X (2012) Inverted polymer solar cells with 8.4% efficiency by conjugated polyelectrolyte. Energy Environ Sci 5(8):8208–8214.  https://doi.org/10.1039/C2EE22296E CrossRefGoogle Scholar
  30. Zalar P, Nguyen T-Q (2012) Charge injection mechanism in PLEDs and charge transport in conjugated polyelectrolytes. In: Liu B, Bazan GC (eds) Conjugated polyelectrolytes. Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, pp 315–344.  https://doi.org/10.1002/9783527655700.ch10 CrossRefGoogle Scholar
  31. Zhao Z, Zhang Y, Wang Y, Qin X, Wu J, Hou J (2016) Fluorinated and non-fluorinated conjugated polymers showing different photovoltaic properties in polymer solar cells with PFNBr interlayers. Org Electron 28:178–183.  https://doi.org/10.1016/j.orgel.2015.11.001 CrossRefGoogle Scholar
  32. Zhao W, Li S, Zhang S, Liu X, Hou J (2017) Ternary polymer solar cells based on two acceptors and one donor for achieving 12.2% efficiency. Adv Mater 29(2):1604059.  https://doi.org/10.1002/adma.201604059 CrossRefGoogle Scholar
  33. Zhou H, Zhang Y, Seifter J, Collins SD, Luo C, Bazan GC, Nguyen T-Q, Heeger AJ (2013) High-efficiency polymer solar cells enhanced by solvent treatment. Adv Mater 25(11):1646–1652.  https://doi.org/10.1002/adma.201204306 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Francesco Carulli
    • 1
  • Wojciech Mróz
    • 1
  • Elisa Lassi
    • 1
  • Cristina Sandionigi
    • 1
  • Benedetta Squeo
    • 1
  • Lorenzo Meazza
    • 1
  • Guido Scavia
    • 1
  • Silvia Luzzati
    • 1
  • Mariacecila Pasini
    • 1
  • Umberto Giovanella
    • 1
  • Francesco Galeotti
    • 1
  1. 1.Istituto per lo Studio delle Macromolecole (CNR)MilanItaly

Personalised recommendations