Advertisement

Chemical Papers

, Volume 72, Issue 7, pp 1707–1718 | Cite as

Discrete dissociation model of photogenerated inter-chain charge transfer states in external electric field

  • Michal Jex
  • Miroslav Menšík
  • Petr Toman
  • Jiří Pfleger
Original Paper
  • 68 Downloads

Abstract

A new theoretical model of photogeneration yield of free charge carriers on the electric field in π-conjugated polymers was introduced. It generalizes the model of Arkhipov et al. (Chem Phys Lett 372:886–892, 2003a) where the dissociation of the inter-chain charge transfer states is controlled by a thermally activated transition from the lowest quantum state over a potential barrier. Contrary to the previous model based on the effective mass approximation, the new model determines the potential and transfer integrals between HOMO orbitals, using quantum chemical methods. The model successfully explained experimental dependences of photogenerated charge yield in poly{1-[4-(trimethylsilyl)phenyl]-2-phenylacetylene} exhibiting a strong sensitivity on electric field strength over a very large interval. This indicates the model applicability for estimation of fill factor in solar cells. The model was found stable toward various distributions of charge transfer states (on-chain delocalization, charge transfer to side groups, helix structure, etc.) and tunneling effects behind potential barrier.

Graphical abstract

Keywords

π-Conjugated polymers Charge carrier photogeneration Photoconductivity Inter-chain charge transfer states Charge transfer state dissociation 

Notes

Acknowledgements

This work was financially supported by the Project no. COST LTC 17029 (under the EU COST MP1406 ACTION) of the Ministry of Education, Youth and Sports of the Czech Republic and by the Projects no. 15-05095S and no. 17-03984S of the Czech Science Foundation.

Supplementary material

11696_2018_449_MOESM1_ESM.docx (951 kb)
Supplementary material 1 (DOCX 950 kb)

References

  1. Arkhipov VI, Emelianova EV, Bässler H (1998) Temperature-independent quantum yield of carrier photogeneration in weakly disordered conjugated polymers. Chem Phys Lett 296:452–458.  https://doi.org/10.1016/s0009-2614(98)01088-4 CrossRefGoogle Scholar
  2. Arkhipov VI, Emelianova EV, Bässler H (1999) Hot exciton dissociation in a conjugated polymer. Phys Rev Lett 82:1321–1324.  https://doi.org/10.1103/physrevlett.82.1321 CrossRefGoogle Scholar
  3. Arkhipov VI, Emelianova EV, Barth S, Bässler H (2000) Ultrafast on-chain dissociation of hot excitons in conjugated polymers. Phys Rev B 61:8207–8214.  https://doi.org/10.1103/physrevb.61.8207 CrossRefGoogle Scholar
  4. Arkhipov VI, Emelianova EV, Bässler H (2003a) Dopant-assisted charge carrier photogeneration in conjugated polymers. Chem Phys Lett 372:886–892.  https://doi.org/10.1016/s0009-2614(03)00520-7 CrossRefGoogle Scholar
  5. Arkhipov VI, Heremans P, Bässler H (2003b) Why is exciton dissociation so efficient at the interface between a conjugated polymer and an electron acceptor? Appl Phys Lett 82:4605–4607.  https://doi.org/10.1063/1.1586456 CrossRefGoogle Scholar
  6. Baranovskii SD, Wiemer M, Nenashev AV, Janson F, Genhard F (2012) Calculating the efficiency of exciton dissociation at the interface between a conjugated polymer and an electron acceptor. J Phys Chem Lett 3:1214–1221.  https://doi.org/10.1021/jz300123k CrossRefGoogle Scholar
  7. Barth S, Bässler H (1997) Intrinsic photoconduction in PPV-type conjugated polymers. Phys Rev Lett 79:4445–4448.  https://doi.org/10.1103/physrevlett.79.4445 CrossRefGoogle Scholar
  8. Becke AD (1993) Density-functional thermochemistry. 3. The role of exact exchange. J Chem Phys 98:5648–5652.  https://doi.org/10.1063/1.464913 CrossRefGoogle Scholar
  9. Braun CL (1984) Electric-field assisted dissociation of charge-transfer states as a mechanism of photocarrier production. J Chem Phys 80:4157–4161.  https://doi.org/10.1063/1.447243 CrossRefGoogle Scholar
  10. Charle KP, Willig F (1978) Generalized one-dimensional Onsager model for charge carrier injection into insulators. Chem Phys Lett 57:253–258.  https://doi.org/10.1016/0009-2614(78)80445-x CrossRefGoogle Scholar
  11. Cimrová V, Nešpůrek S (1994) New model of charge-carrier photogeneration for poly(n-vinylcarbazole). Chem Phys 184:283–293.  https://doi.org/10.1016/0301-0104(94)00095-6 CrossRefGoogle Scholar
  12. Devizis A, Merholz K, Hertel D, Gulbinas V (2010) Hierarchical charge carrier motion in conjugated polymers. Chem Phys Lett 498:302–306.  https://doi.org/10.1016/j.cplett.2010.08.071 CrossRefGoogle Scholar
  13. Francl MM, Pietro WJ, Hehre WJ, Binkley JS, Gordon MS, DeFrees DJ, Pople JA (1982) Self-consistent molecular orbital methods. 23. A polarization-type basis set for second-row elements. J Chem Phys 77:3654–3665.  https://doi.org/10.1063/1.444267 CrossRefGoogle Scholar
  14. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas Ö, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, Revision C.01. Gaussian Inc, WallingfordGoogle Scholar
  15. Grimme S (2006) Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J Comput Chem 27:1787–1799.  https://doi.org/10.1002/jcc.20495 CrossRefGoogle Scholar
  16. Grimme J, Kreyenschmidt M, Uckert F, Müllen K, Scherf U (1995) Conjugation length in poly(para-phenylene)-type polymers. Adv Mater 7:292–295.  https://doi.org/10.1002/adma.19950070310 CrossRefGoogle Scholar
  17. Grozema FC, Siebbeles LDA (2008) Mechanism of charge transport in self-organizing organic materials. Int Rev Phys Chem 27:87–138.  https://doi.org/10.1080/01442350701782776 CrossRefGoogle Scholar
  18. Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J Phys Chem B 106:7791–7795.  https://doi.org/10.1021/jp021114v CrossRefGoogle Scholar
  19. Guo J, Okhita H, Benten H, Ito S (2009) Near-IR femtosecond transient absorption spectroscopy of ultrafast polaron and triplet exciton formation in polythiophene films with different regioregularities. J Am Chem Soc 131:16869–16880.  https://doi.org/10.1021/ja906621a CrossRefGoogle Scholar
  20. Hong KM, Noolandi J (1978) Solution of Smoluchowski equation with a coulomb potential, 1. General results. J Chem Phys 68:5163–5171.  https://doi.org/10.1063/1.435636 CrossRefGoogle Scholar
  21. Janković V, Vukmirović N (2017) Origin of space-separated charges in photoexcited organic heterojunctions on ultrafast time scales. Phys Rev B 95:075308.  https://doi.org/10.1103/physrevb.95.075308 CrossRefGoogle Scholar
  22. Jex M (2013) Photogeneration of charge carriers in substituted polyacetylenes. Master thesis, Charles University in Prague. https://is.cuni.cz/webapps/zzp/detail/119099/?lang=en
  23. Jung J, Stefaniuk-Grams A, Ulanski J (2017) Photogeneration of charge carriers in (phenyl-C61-butyric acid methyl ester) mixed with a small amount of polymers. J Phys Chem.  https://doi.org/10.1021/acs.jpcc.7b06179 (to be published) Google Scholar
  24. Lee K, Lee S, Choi CH, Lee S (2017) Effects of external electric field and anisotropic long-range reactivity on charge separation probability. J Chem Phys 147:144111.  https://doi.org/10.1063/1.5000882 CrossRefGoogle Scholar
  25. Lin Z, Zhang N, Jayawickramarajah J, Rubtsov IV (2012) Ballistic energy transport along PEG chains: distance dependence of the transport efficiency. Phys Chem Chem Phys 14:10445–10454.  https://doi.org/10.1039/c2cp40187h CrossRefGoogle Scholar
  26. Lukin LV (2015) Photogeneration of charge carriers in a weakly disordered pi-conjugated polymer at high photon energies of exciting light. Synth Met 199:58–68.  https://doi.org/10.1016/j.synthmet.2014.10.040 CrossRefGoogle Scholar
  27. Menšík M (1998) Model of the photogeneration of free charge carriers in poly(N-vinylcarbazole). Polym Adv Technol 9:635–640.  https://doi.org/10.1002/(SICI)1099-1581(1998100)9:10/11<635::AID-PAT837>3.0.CO;2-4
  28. Menšík M, Pfleger J, Rybak A, Jung J, Ulanski J, Halašová K, Vohlídal J (2011) Intrinsic photoconduction in PPV-type conjugated polymer. Polym Adv Technol 22:2075–2083.  https://doi.org/10.1002/pat.1724 CrossRefGoogle Scholar
  29. Menšík M, Jex M, Pfleger J, Jung J (2012) Photogeneration of free charge carriers in pi-conjugated polymers with bulky side groups. Chem Phys 404:48–55.  https://doi.org/10.1016/j.chemphys.2012.03.009 CrossRefGoogle Scholar
  30. Menšík M, Toman P, Pfleger J (2017a) Dynamics of photogenerated polarons and polaron pairs in P3HT thin films. Chem Phys Lett 677:87–91.  https://doi.org/10.1016/j.cplett.2017.03.082 CrossRefGoogle Scholar
  31. Menšík M, Sun SJ, Toman P, Král K (2017b) Modelling of charge carrier mobility for transport between elastic polyacetylene-like polymer nanorods. Ceram Silik 61:127–135.  https://doi.org/10.13168/cs.2017.0007 Google Scholar
  32. Newton MD (1991) Quantum chemical probes of electron-transfer kinetics: the nature of donor-acceptor interactions. Chem Rev 91:767–792.  https://doi.org/10.1021/cr00005a007 CrossRefGoogle Scholar
  33. Noolandi J, Hong KM (1979) Theory of photogeneration and fluorescence quenching. J Chem Phys 70:3230–3236.  https://doi.org/10.1063/1.437912 CrossRefGoogle Scholar
  34. Ogata Y, Kawaguchi D, Tanaka K (2015) An effect of molecular motion on carrier formation in a poly(3-hexylthiophene) film. Sci Rep 5:8436.  https://doi.org/10.1038/srep08436 CrossRefGoogle Scholar
  35. Onsager L (1938) Initial recombination of ions. Phys Rev 54:554–557.  https://doi.org/10.1103/PhysRev.54.554 CrossRefGoogle Scholar
  36. Pauck T, Bässler H, Grimme J, Scherf U, Müllen K (1996) A comparative site-selective fluorescence study of ladder-type para-phenylene oligomers and oligo-phenylenevinylenes. Chem Phys 210:219–227.  https://doi.org/10.1016/0301-0104(96)00062-6 CrossRefGoogle Scholar
  37. Rais D, Menšík M, Paruzel B, Kurunthu D, Pfleger J (2017) Phonons spreading from laser-heated gold nanoparticle array accelerate diffusion of excitons in an underlying polythiophene thin film. Phys Chem Chem Phys 19:10562–10570.  https://doi.org/10.1039/c7cp00286f CrossRefGoogle Scholar
  38. Rubtsova NI, Rubtsov IV (2013) Ballistic energy transport via perfluoroalkane linkers. Chem Phys 422:16–21.  https://doi.org/10.1016/j.chemphys.2013.01.026 CrossRefGoogle Scholar
  39. Salzmann I, Heimel G, Oehzelt M, Winkler S, Koch N (2016) Molecular electrical doping of organic semiconductors: fundamental mechanisms and emerging dopant design rules. Acc Chem Res 49:370–378.  https://doi.org/10.1021/acs.accounts.5b00438 CrossRefGoogle Scholar
  40. Sano H, Tachiya M (1979) Partially diffusion-controlled recombination. J Chem Phys 71:1276–1282.  https://doi.org/10.1063/1.438427 CrossRefGoogle Scholar
  41. Seki K, Wojcik M (2017) Electric field-assisted dissociation yield of bound charge pairs in low permittivity materials. J Phys Chem C 121:3632–3641.  https://doi.org/10.1021/acs.jpcc.6b12470 CrossRefGoogle Scholar
  42. Silinsh EA, Kolesnikov VA, Muzikante IJ, Balode DR (1982) On charge carrier photogeneration mechanisms in organic molecular-crystals. Phys Stat Sci 113:379–393.  https://doi.org/10.1002/pssb.2221130141 CrossRefGoogle Scholar
  43. Spitler MT (1987) One-dimensional Onsager model for dye sensitized charge injection into Semiconductors. J Electroanal Chem 228:69–76.  https://doi.org/10.1016/0022-0728(87)80097-9 CrossRefGoogle Scholar
  44. Sun SJ, Lin CY, Yu CF (2011) Transport properties of orbitally hybridized organic semiconductors. Eur Phys J B 83:173–179.  https://doi.org/10.1140/epjb/e2011-20253-202547 CrossRefGoogle Scholar
  45. Toman P, Nešpůrek S, Weiter M, Vala M, Sworakowski J, Bartkowiak W, Menšík M (2009a) Model of the influence of energetic disorder on inter-chain charge carrier mobility in poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]. Polym Adv Technol 20:263–267.  https://doi.org/10.1002/pat.1260 CrossRefGoogle Scholar
  46. Toman P, Nešpůrek S, Bartkowiak W (2009b) Modeling of charge carrier transport in conjugated polymers doped by polar additives. Mat Sci Pol 27:797–812Google Scholar
  47. Toman P, Menšík M, Bartkowiak W, Pfleger J (2017) Modelling of the charge carrier mobility in disordered linear polymer materials. Phys Chem Chem Phys 19:7760–7771.  https://doi.org/10.1039/c6cp07789g CrossRefGoogle Scholar
  48. TURBOMOLE V6.2 (2010) Development of University of Karlsruhe and Forschungszentrum Karlsruhe GmbH, 1989–2007, TURBOMOLE GmbH, since 2007. http://www.turbomole.com
  49. Wang XY, Raharjo RD, Lee HJ, Lu Y, Freeman BD, Sanchez IC (2006) Molecular simulation and experimental study of substituted polyacetylenes: fractional free volume, cavity size distributions and diffusion coefficients. J Phys Chem B 110:12666–12672.  https://doi.org/10.1021/jp060234q CrossRefGoogle Scholar
  50. Wojcik M, Novak A, Seki K (2017) Geminate electron-hole recombination in organic photovoltaic cells. A semiempirical theory. J Chem Phys 146:054101.  https://doi.org/10.1063/1.4974812 CrossRefGoogle Scholar
  51. Yampolskii YP, Korikov AP, Shantarovich VP, Nagai K, Freeman BD, Masuda T, Teraguchi M, Kwak G (2001) Gas permeability and free volume of highly branched substituted acetylene polymers. Macromolecules 34:1788–1796.  https://doi.org/10.1021/ma000628u CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  2. 2.Department of Physics, Faculty of Nuclear Sciences and Physical EngineeringCzech Technical University in PraguePragueCzech Republic
  3. 3.Institut für AnalysisKarlsruher Institut für TechnologieKarlsruheGermany

Personalised recommendations