Chemical Papers

, Volume 72, Issue 7, pp 1719–1728 | Cite as

Electric field dependence of charge mobility in linear conjugated polymers

  • Petr TomanEmail author
  • Miroslav Menšík
  • Jiří Pfleger
Original Paper


A combined quantum mechanical and semi-classical approach was used for the description of the charge carrier transport, taking into account realistic microscopic lamellar structure present in many common conjugated polymers. Unlike previous theoretical models that consider a polymer as a 3D point lattice of single-state sites or model the polymer chain as a molecule with single charge state, our molecular-scale model takes into account the density of states of conjugated polymer chain segments determined using a quantum–mechanical tight-binding model. Because of the relatively fast charge carrier delocalization on the conjugated polymer chain segments, the short-distance on-chain motion is separated from the slower inter-chain hopping. Inter-chain hopping rates, described by means of the Marcus theory, are calculated self-consistently with the chain segment occupation. The present model describes the electric field dependence of the hole mobility in conjugated polymers and includes the influence of the transverse electric field, which is important for simulation of the gate-voltage dependences of the charge carrier transport in organic field effect transistors.

Graphical Abstract


Charge carrier mobility Electric field dependence Conjugated polymer Charge transport modelling Field effect transistor 



The work was supported by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Project POLYMAT LO1507.


  1. Alberga D, Perrier A, Ciofini I, Mangiatordi GF, Lattanzi G, Adamo C (2015) Morphological and charge transport properties of amorphous and crystalline P3HT and PBTTT: insights from theory. Phys Chem Chem Phys 17(28):18742–18750. CrossRefPubMedGoogle Scholar
  2. Bässler H (1993) Charge transport in disordered organic photoconductors a Monte Carlo simulation study. Physica Status Solidi (B) 175(1):15–56. CrossRefGoogle Scholar
  3. Bisoyi S, Zschieschang U, Kang MJ, Takimiya K, Klauk H, Tiwari SP (2014) Bias-stress stability of low-voltage p-channel and n-channel organic thin-film transistors on flexible plastic substrates. Org Electron 15(11):3173–3182. CrossRefGoogle Scholar
  4. Bolsée JC, Oosterbaan WD, Lutsen L, Vanderzande D, Manca J (2011) CAFM on conjugated polymer nanofibers: capable of assessing one fiber mobility. Org Electron Phys Mater Appl 12(12):2084–2089. CrossRefGoogle Scholar
  5. Dierckx W, Oosterbaan WD, Bolsée J-C, Maes W, Vanderzande D, Manca J (2014) Poly(3-alkylthiophene) nanofibers for optoelectronic devices. J Mater Chem C 2(29):5730. CrossRefGoogle Scholar
  6. Dunlap DH, Parris PE, Kenkre VM (1996) Charge-dipole model for the universal field dependence of mobilities in molecularly doped polymers. Phys Rev Lett 77(3):542–545. CrossRefPubMedGoogle Scholar
  7. Fishchuk II, Kadashchuk A, Ullah M, Sitter H, Pivrikas A, Genoe J et al (2012) Electric field dependence of charge carrier hopping transport within the random energy landscape in an organic field effect transistor. Phys Rev B 86(4):45207. CrossRefGoogle Scholar
  8. Fong HH, Papadimitratos A, Malliaras GG (2006) Nondispersive hole transport in a polyfluorene copolymer with a mobility of 0.01 cm2 V-1 s-1. Appl Phys Lett 89(17):172116. CrossRefGoogle Scholar
  9. Frenkel J (1938) On pre-breakdown phenomena in insulators and electronic semi-conductors. Phys Rev 54(8):647–648. CrossRefGoogle Scholar
  10. Gali SM, D’Avino G, Aurel P, Han G, Yi Y, Papadopoulos TA et al (2017) Energetic fluctuations in amorphous semiconducting polymers: impact on charge-carrier mobility. J Chem Phys 147(13):134904. CrossRefPubMedGoogle Scholar
  11. Garcia-Belmonte G (2013) Carrier recombination flux in bulk heterojunction polymer: fullerene solar cells: effect of energy disorder on ideality factor. Solid State Electron 79:201–205. CrossRefGoogle Scholar
  12. Gemünden P, Poelking C, Kremer K, Daoulas K, Andrienko D (2015) Effect of mesoscale ordering on the density of states of polymeric semiconductors. Macromol Rapid Commun 36(11):1047–1053. CrossRefPubMedGoogle Scholar
  13. Gill WD (1972) Drift mobilities in amorphous charge-transfer complexes of trinitrofluorenone and poly-n-vinylcarbazole. J Appl Phys 43(12):5033–5040. CrossRefGoogle Scholar
  14. Grau G, Kitsomboonloha R, Kang H, Subramanian V (2015) High performance printed organic transistors using a novel scanned thermal annealing technology. Org Electron Phys Mater Appl 20:150–157. CrossRefGoogle Scholar
  15. Grozema FC, Siebbeles LDA (2008) Mechanism of charge transport in self-organizing organic materials. Int Rev Phys Chem 27(1):87–138. CrossRefGoogle Scholar
  16. Grozema FC, van Duijnen PT, Berlin YA, Ratner MA, Siebbeles LDA (2002) Intramolecular charge transport along isolated chains of conjugated polymers: effect of torsional disorder and polymerization defects. J Phys Chem B 106(32):7791–7795. CrossRefGoogle Scholar
  17. Hamadani BH, Richter CA, Gundlach DJ, Kline RJ, McCulloch I, Heeney M (2007) Influence of source–drain electric field on mobility and charge transport in organic field-effect transistors. J Appl Phys 102(4):044503. CrossRefGoogle Scholar
  18. He Y, Chen X-Q, Hou X-Y (2014) Effect of traps’ adjacency on the electric field dependence of mobility in organic systems. Chin Phys B 23(9):97201. CrossRefGoogle Scholar
  19. Hu Y, Chaitanya K, Yin J, Ju X-H (2016) Theoretical investigation on the crystal structures and electron transfer properties of cyanated TTPO and their selenium analogs. J Mater Sci 51(13):6235–6248. CrossRefGoogle Scholar
  20. Inigo AR, Chiu H-C, Fann W, Huang Y-S, Jeng US, Hsu CH et al (2003) Structure and charge transport properties in MEH-PPV. Synth Met 139(3):581–584. CrossRefGoogle Scholar
  21. Kim H-S, Han K-Y (2016) High-SNR capacitive multi-touch sensing technique for AMOLED display panels. IEEE Sens J 16(4):859–860. CrossRefGoogle Scholar
  22. Kordt P, van der Holst JJM, Al Helwi M, Kowalsky W, May F, Badinski A et al (2015) Modeling of organic light emitting diodes: from molecular to device properties. Adv Funct Mater 25(13):1955–1971. CrossRefGoogle Scholar
  23. Kreouzis T, Poplavskyy D, Tuladhar S, Campoy-Quiles M, Nelson J, Campbell A et al (2006) Temperature and field dependence of hole mobility in poly(9,9-dioctylfluorene). Phys Rev B 73(23):235201. CrossRefGoogle Scholar
  24. Kumar B, Kaushik BK, Negi YS (2014) Organic thin film transistors: structures, models, materials, fabrication, and applications: a review. Polym Rev 54(1):33–111. CrossRefGoogle Scholar
  25. Li X, Kadashchuk A, Fishchuk II, Smaal WTT, Gelinck G, Broer DJ et al (2012) Electric field confinement effect on charge transport in organic field-effect transistors. Phys Rev Lett 108(6):66601. CrossRefGoogle Scholar
  26. Lücke A, Ortmann F, Panhans M, Sanna S, Rauls E, Gerstmann U et al (2016) Temperature-dependent hole mobility and its limit in crystal-phase P3HT calculated from first principles. J Phys Chem B 120(24):5572–5580. CrossRefPubMedGoogle Scholar
  27. Lüssem B, Tietze ML, Kleemann H, Hoßbach C, Bartha JW, Zakhidov A et al (2013) Doped organic transistors operating in the inversion and depletion regime. Nat Commun 4:2775. CrossRefPubMedPubMedCentralGoogle Scholar
  28. Mandal S, Noh Y-Y (2015) Printed organic thin-film transistor-based integrated circuits. Semicond Sci Technol 30(6):64003. CrossRefGoogle Scholar
  29. Mas-Torrent M, Den Boer D, Durkut M, Hadley P, Schenning APHJ (2004) Field effect transistors based on poly(3-hexylthiophene) at different length scales. Nanotechnology 15:S265–S269. CrossRefGoogle Scholar
  30. May V, Kühn O (2000) Charge and energy transfer dynamics in molecular systems, 1st edn. Wiley-VCH Verlag GmbH, BerlinGoogle Scholar
  31. Melville O, Lessard BH, Bender TP (2015) Phthalocyanine based organic thin-film transistors: a review of recent advances. ACS Appl Mater Interfaces 7:13105–13118. CrossRefPubMedGoogle Scholar
  32. Menšík M, Sun S-J, Toman P, Král K (2017) Modelling of charge carrier mobility for transport between elastic polyacetylene-like polymer nanorods. Ceram Silik 61(2):127–135. CrossRefGoogle Scholar
  33. Menšík M, Toman P, Bielecka U, Bartkowiak W, Pfleger J, Paruzel B (2018) On the methodology of the determination of charge concentration dependent mobility from organic field-effect transistor characteristics. Phys Chem Chem Phys 20(4):2308–2319. CrossRefPubMedGoogle Scholar
  34. Mozer AJ, Sariciftci NS (2004) Negative electric field dependence of charge carrier drift mobility in conjugated, semiconducting polymers. Chem Phys Lett 389(4–6):438–442. CrossRefGoogle Scholar
  35. Nam S, Kim J, Lee H, Kim H, Ha CS, Kim Y (2012) Doping effect of organosulfonic acid in poly(3-hexylthiophene) films for organic field-effect transistors. ACS Appl Mater Interfaces 4(3):1281–1288. CrossRefPubMedGoogle Scholar
  36. Novikov SV, Dunlap DH, Kenkre VM, Parris PE, Vannikov AV (1998) Essential role of correlations in governing charge transport in disordered organic materials. Phys Rev Lett 81(20):4472–4475. CrossRefGoogle Scholar
  37. Pautmeier L, Richert R, Bässler H (1990) Poole–Frenkel behavior of charge transport in organic solids with off-diagonal disorder studied by Monte Carlo simulation. Synth Met 37(1–3):271–281. CrossRefGoogle Scholar
  38. Pingel P, Zen A, Abellón RD, Grozema FC, Siebbeles LDA, Neher D (2010) Temperature-resolved local and macroscopic charge carrier transport in thin P3HT layers. Adv Funct Mater 20(14):2286–2295. CrossRefGoogle Scholar
  39. Poelking C, Andrienko D (2013) Effect of polymorphism, regioregularity and paracrystallinity on charge transport in poly(3-hexylthiophene) [P3HT] nanofibers. Macromolecules 46(22):8941–8956. CrossRefGoogle Scholar
  40. Poelking C, Daoulas K, Troisi A, Andrienko D (2014) Morphology and charge transport in P3HT: a theorist’s perspective. Adv Polym Sci 265:139–180. CrossRefGoogle Scholar
  41. Prins P, Grozema FC, Schins JM, Patil S, Scherf U, Siebbeles LDA (2006) High intrachain hole mobility on molecular wires of ladder-type poly(p-phenylenes). Phys Rev Lett 96(14):146601. CrossRefPubMedGoogle Scholar
  42. Redecker BM, Bradley DDC, Inbasekaran M, Wu WW, Woo EP (1999) High mobility hole transport fluorene-triarylamine copolymers. Adv Funct Mater 11(3):241–246.<241::aid-adma241>;2-jGoogle Scholar
  43. Rühle V, Kirkpatrick J, Andrienko D (2010) A multiscale description of charge transport in conjugated oligomers. J Chem Phys 132(13):134103. CrossRefPubMedGoogle Scholar
  44. Ryu GS, Kim JS, Jeong SH, Song CK (2013) A printed OTFT-backplane for AMOLED display. Org Electron Phys Mater Appl 14(4):1218–1224. CrossRefGoogle Scholar
  45. Seo J, Song M, Lee C, Nam S, Kim H, Park SY et al (2016) Physical force-sensitive touch responses in liquid crystal-gated-organic field-effect transistors with polymer dipole control layers. Org Electron Phys Mater Appl 28:184–188. CrossRefGoogle Scholar
  46. Shimomura T, Takahashi T, Ichimura Y, Nakagawa S, Noguchi K, Heike S et al (2011) Relationship between structural coherence and intrinsic carrier transport in an isolated poly(3-hexylthiophene) nanofiber. Phys Rev B 83(11):115314. CrossRefGoogle Scholar
  47. Sirringhaus H, Brown PJ, Friend RH, Nielsen MM, Bechgaard K, Langeveld-Voss BMW et al (1999) Two-dimensional charge transport in self-organized, high-mobility conjugated polymers. Nature 401(6754):685–688. CrossRefGoogle Scholar
  48. Steudel S, Myny K, Schols S, Vicca P, Smout S, Tripathi A et al (2012) Design and realization of a flexible QQVGA AMOLED display with organic TFTs. Org Electron Phys Mater Appl 13(9):1729–1735. CrossRefGoogle Scholar
  49. Sun S-J, Menšík M, Toman P, Gagliardi A, Král K (2018) Influence of acceptor on charge mobility in stacked π-conjugated polymers. Chem Phys 501:8–14. CrossRefGoogle Scholar
  50. Toman P, Nešpůrek S, Weiter M, Vala M, Sworakowski J, Bartkowiak W et al (2006) Influence of dipolar species on charge transport in poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]. Polym Adv Technol 17(9–10):673–678. CrossRefGoogle Scholar
  51. Toman P, Nešpůrek S, Weiter M, Vala M, Sworakowski J, Bartkowiak W et al (2009) Model of the influence of energetic disorder on inter-chain charge carrier mobility in poly[2-methoxy-5-(2′-ethylhexyloxy)-p-phenylene vinylene]. Polym Adv Technol 20(3):263–267. CrossRefGoogle Scholar
  52. Toman P, Menšík M, Bartkowiak W, Pfleger J (2017) Modelling of the charge carrier mobility in disordered linear polymer materials. Phys Chem Chem Phys 19(11):7760–7771. CrossRefPubMedGoogle Scholar
  53. Torricelli F, Ghittorelli M, Rapisarda M, Valletta A, Mariucci L, Jacob S et al (2015) Unified drain-current model of complementary p- and n-type OTFTs. Org Electron Phys Mater Appl 22:5–11. CrossRefGoogle Scholar
  54. Verilhac JM, LeBlevennec G, Djurado D, Rieutord F, Chouiki M, Travers JP et al (2006) Effect of macromolecular parameters and processing conditions on supramolecular organisation, morphology and electrical transport properties in thin layers of regioregular poly(3-hexylthiophene). Synth Met 156(11–13):815–823. CrossRefGoogle Scholar
  55. Xie W, Sun YY, Zhang SB, Northrup JE (2011) Structure and sources of disorder in poly(3-hexylthiophene) crystals investigated by density functional calculations with van der Waals interactions. Phys Rev B 83(18):184117. CrossRefGoogle Scholar
  56. Young RH, Rule NG (1994) Electronic hopping velocities that decrease as the electric field strength increases. Phys Rev Lett 72(3):388–391. CrossRefPubMedGoogle Scholar
  57. Yu ZG, Smith DL, Saxena A, Martin RL, Bishop AR (2000) Molecular geometry fluctuation model for the mobility of conjugated polymers. Phys Rev Lett 84(4):721–724. CrossRefPubMedGoogle Scholar
  58. Zhao C, Ge H, Yin S, Wang W (2014) Theoretical investigation on the crystal structures and electron transport properties of several nitrogen-rich pentacene derivatives. J Mol Model 20(4):2158. CrossRefPubMedGoogle Scholar
  59. Zschieschang U, Klauk H (2015) Low-voltage organic transistors with steep subthreshold slope fabricated on commercially available paper. Org Electron 25:340–344. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech Republic, v.v.i.Prague 6Czech Republic

Personalised recommendations