Abstract
Carbon nanotubes (CNT) have superior mechanical, electrical and thermal properties that can be incorporated into polymeric matrices for applications in optoelectronic devices, antistatic coatings, electromagnetic shielding materials, and so on. Yet, to transfer their properties to the matrix they must be well dispersed. This work proposes the synthesis of conductive nanocomposites based on polymethyl methacrylate (PMMA)/multiwalled carbon nanotubes (MWCNT) by in situ solution polymerization under probe sonication. The effect of CNT amounts and ultrasound amplitude on the electrical and thermal properties of the nanocomposites were studied by a factorial experimental design. Casting films presented electrical conductivity of 10 S/m at 2.2 wt% of MWCNT. TEM analyses showed that nanoparticles are interconnected and disperse without orientation. The degradation temperature of the nanocomposites increased about 15 °C. FTIR analyses of nanocomposites showed a new peak (1620 cm−1) due to a C–C bond between PMMA and CNT. Raman spectra presented a slight shift of the D and G′ bands towards higher wavenumbers for CNT after purification and nanocomposites. This could be related to some disentanglement of the nanotube bundles.
This is a preview of subscription content, access via your institution.
We’re sorry, something doesn't seem to be working properly.
Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.









References
Bauhofer W, Kovacs JZA (2009) Review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498. https://doi.org/10.1016/j.compscitech.2008.06.018
Bhanvase BA, Pinjari DV, Sonowane SH, Gogate PR, Pandir AB (2012) Analysis of semibatch emulsion polymerization: role of ultrasound and initiator. Ultrason Sonochem 19:97–103. https://doi.org/10.1016/j.ultsonch.2011.05.016
Bokobza L, Zhang J (2012) Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym Lett 6:601–608. https://doi.org/10.3144/expresspolymlett.2012.63
Bosi S, Fabbro A, Cantarutti C, Mihajlovic M, Ballerini L, Prato M (2016) Carbon based substrates for interfacing neurons: comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks. Carbon 97:87–91. https://doi.org/10.1016/j.carbon.2015.07.074
Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, Hoboken
Coelho PHSL, Marchesin MS, Morales AR, Bartoli JR (2014) Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites. Mater Res 17:127–132. https://doi.org/10.1590/S1516-14392014005000059
Dyachkova TP, Melezhyk AV, Gorsky SY, Anosova IV, Tkachev AG (2013) Some aspects of functionalization and modification of carbon nanomaterials. Nanosyst Phys Chem Math 4:605–662
Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159. https://doi.org/10.1021/jp046274g
Grossiord N, Loos J, Reveg O, Koning CE (2006) Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089–1099. https://doi.org/10.1021/cm051881h
Hasanzadeh I, Barikani M, Mahdavian AR (2016) Ultrasound-assisted emulsion polymerization of poly(methyl methacrylate-co-butyl acrylate): effect of initiator content and temperature. Polym Eng Sci 56:214–221. https://doi.org/10.1002/pen.24249
Herbst MH, Macêdo MIF, Rocco AM (2004) Tecnologia dos nanotubos de carbono: tendências e perspectivas de uma área multidisciplinar. Quim Nova 27:986–992
Hill DE, Lin Y, Rao AM, Allard LF, Sun Y-P (2002) Functionalization of carbon nanotubes with polystyrene. Macromolecules 35:9466–9471. https://doi.org/10.1021/ma020855r
Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. https://doi.org/10.1038/354056a0
Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly(methyl metacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395–400. https://doi.org/10.1016/S0921-5093(99)00263-4
Kaempgen M, Duesbrg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429. https://doi.org/10.1016/j.apsusc.2005.01.020
Kim HM, Choi M-S, Joo J, Cho SJ, Yoon HS (2006) Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys Rev B 74(054202):1–7. https://doi.org/10.1103/PhysRevB.74.054202
Kim ST, Choi HJ, Hong SM (2007) Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid Polym Sci 285:593–598. https://doi.org/10.1007/s00396-006-1599-z
Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588. https://doi.org/10.1103/RevModPhys.45.574
Kuester S, Barra GMO, Ferreira JC Jr, Soares BG, Demarquette NR (2016) Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ranbutylene-b-styrene) and carbon nanotubes. Eur Polym J 77:43–53. https://doi.org/10.1016/j.eurpolymj.2016.02.020
Lavall RL, De Sales JA, Borges RS, Calado HDR, Machado JC, Windmöller D, Silva GG, Lacerda RG, Ladeira LO (2010) Nanocompósitos de poliuretana termoplástica e nanotubos de carbono de paredes múltiplas para dissipação eletrostática. Quim Nova 33:133–140
Lipinska ME, Rebelo SLH, Pereira MFR, Gomes JANF, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50:3280–3294. https://doi.org/10.1016/j.carbon.2011.12.018
Liu J, Liu T, Kumar S (2005) Effect of solvent solubility parameter on SWCNT dispersion in PMMA. Polymer 46:3419–3424. https://doi.org/10.1016/j.polymer.2005.02.086
Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367. https://doi.org/10.1016/j.compositesa.2010.07.003
Marimuthu E, Murugesan V (2017) Influence of ultrasonic condition on phase transfer catalyzed radical polymerization of methyl methacrylate in two phase system—a kinetic study. Ultrason Sonochem 38:560–569. https://doi.org/10.1016/j.ultsonch.2016.08.028
McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232. https://doi.org/10.1016/j.polymer.2005.06.094
McNeill IC (1968) A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis. Eur Polym J 4:21–30. https://doi.org/10.1016/0014-3057(68)90004-9
Ménard-Moyon C, Fabbro C, Prato M, Bianco A (2011) One-pot triple functionalization of carbon nanotubes. Chem Eur J 17:3222–3227. https://doi.org/10.1002/chem.201003050
Mir SM, Jafari SH, Khonakdar HA, Krause B, Pötschke P, Qazvinide NT (2016) A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions. Mater Des 111:253–262. https://doi.org/10.1016/j.matdes.2016.08.073
Park SJ, Lim ST, Cho MS, Kim HM, Joo J, Choi HJ (2005) Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite. Curr Appl Phys 5:302–304. https://doi.org/10.1016/j.cap.2004.02.013
Piegat A, Jedrzejewska A, Pelech R, Pelech I (2016) Effect of carbon nanotube modification on poly(butylene terephthalate)-based composites. Chem Pap 70:801–810. https://doi.org/10.1515/chempap-2016-0007
Pötschke P, Villmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54:3071–3078. https://doi.org/10.1016/j.polymer.2013.04.012
Price GJ (1996) Ultrasonically enhanced polymer synthesis. Ultrason Sonochem 3:S229–S238. https://doi.org/10.1016/S1350-4177(96)00031-4
Price GJ, Norris DJ, West PJ (1992) Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules 25:6447–6454. https://doi.org/10.1021/ma00050a010
Price GJ, West PJ, Smith PF (1994) Control of polymer structure using power ultrasound. Ultrason Sonochem 1:S51–S56. https://doi.org/10.1016/1350-4177(94)90028-0
Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533. https://doi.org/10.1115/1.1490129
Ramadan AA, Gould RD, Ashour A (1994) On the Van der Pauw method of resistivity measurements. Thin Solids Films 239:272–275. https://doi.org/10.1016/0040-6090(94)90863-X
Rodrigues MI, Iemma AF (2014) Experimental design and process optimization, 1st edn. CRC Press, Boca Raton
Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550. https://doi.org/10.1080/00018732.2011.582251
Schmidt RH, Kinloch IA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23:5707–5712. https://doi.org/10.1021/la062794m
Stobinsk L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 501:77–84. https://doi.org/10.1016/j.jallcom.2010.04.032
Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. https://doi.org/10.1146/annurev.matsci.29.1.295
Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. https://doi.org/10.1021/cr050569o
Van Der Pauw LJ (1959) A method of measuring the resistivity and Hall coefficient on Lamellae of arbitrary shape. Philips Tech Rev 20:220–224
Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141. https://doi.org/10.1016/j.progpolymsci.2004.08.001
Wang R, Tao J, Yu B, Dai L (2014) Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent 111:318–326. https://doi.org/10.1016/j.prosdent.2013.07.017
Acknowledgements
The authors are very grateful to Prof. L. O. Ladeira and Dr. T. H. R. da Cunha (UFMG); Prof. J. A. S. Tenório, Dr. V. B. Telles and Prof. E. G. Fernandes (EPUSP); Prof. Edson N. Ito (UFRN); Unigel; CCS/Unicamp; M. Mituo, C. Ikehara, C. N. M. Ishiuchi, M. S. Marchesin and L. Z. Linan (Unicamp); FAEPEX, FAPESP, CNPq and CAPES.
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bressanin, J.M., Assis Júnior, V.A. & Bartoli, J.R. Electrically conductive nanocomposites of PMMA and carbon nanotubes prepared by in situ polymerization under probe sonication. Chem. Pap. 72, 1799–1810 (2018). https://doi.org/10.1007/s11696-018-0443-5
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s11696-018-0443-5
Keywords
- Multiwalled carbon nanotubes
- Polymeric nanocomposites
- Poly(methyl methacrylate)
- In situ polymerization
- Electrical conductivity
- Probe sonication