Chemical Papers

, Volume 72, Issue 7, pp 1799–1810 | Cite as

Electrically conductive nanocomposites of PMMA and carbon nanotubes prepared by in situ polymerization under probe sonication

  • Jéssica M. Bressanin
  • Valdir A. Assis Júnior
  • Julio R. Bartoli
Original Paper


Carbon nanotubes (CNT) have superior mechanical, electrical and thermal properties that can be incorporated into polymeric matrices for applications in optoelectronic devices, antistatic coatings, electromagnetic shielding materials, and so on. Yet, to transfer their properties to the matrix they must be well dispersed. This work proposes the synthesis of conductive nanocomposites based on polymethyl methacrylate (PMMA)/multiwalled carbon nanotubes (MWCNT) by in situ solution polymerization under probe sonication. The effect of CNT amounts and ultrasound amplitude on the electrical and thermal properties of the nanocomposites were studied by a factorial experimental design. Casting films presented electrical conductivity of 10 S/m at 2.2 wt% of MWCNT. TEM analyses showed that nanoparticles are interconnected and disperse without orientation. The degradation temperature of the nanocomposites increased about 15 °C. FTIR analyses of nanocomposites showed a new peak (1620 cm−1) due to a C–C bond between PMMA and CNT. Raman spectra presented a slight shift of the D and G′ bands towards higher wavenumbers for CNT after purification and nanocomposites. This could be related to some disentanglement of the nanotube bundles.


Multiwalled carbon nanotubes Polymeric nanocomposites Poly(methyl methacrylate) In situ polymerization Electrical conductivity Probe sonication 



The authors are very grateful to Prof. L. O. Ladeira and Dr. T. H. R. da Cunha (UFMG); Prof. J. A. S. Tenório, Dr. V. B. Telles and Prof. E. G. Fernandes (EPUSP); Prof. Edson N. Ito (UFRN); Unigel; CCS/Unicamp; M. Mituo, C. Ikehara, C. N. M. Ishiuchi, M. S. Marchesin and L. Z. Linan (Unicamp); FAEPEX, FAPESP, CNPq and CAPES.


  1. Bauhofer W, Kovacs JZA (2009) Review and analysis of electrical percolation in carbon nanotube polymer composites. Compos Sci Technol 69:1486–1498. CrossRefGoogle Scholar
  2. Bhanvase BA, Pinjari DV, Sonowane SH, Gogate PR, Pandir AB (2012) Analysis of semibatch emulsion polymerization: role of ultrasound and initiator. Ultrason Sonochem 19:97–103. CrossRefGoogle Scholar
  3. Bokobza L, Zhang J (2012) Raman spectroscopic characterization of multiwall carbon nanotubes and of composites. Express Polym Lett 6:601–608. CrossRefGoogle Scholar
  4. Bosi S, Fabbro A, Cantarutti C, Mihajlovic M, Ballerini L, Prato M (2016) Carbon based substrates for interfacing neurons: comparing pristine with functionalized carbon nanotubes effects on cultured neuronal networks. Carbon 97:87–91. CrossRefGoogle Scholar
  5. Box GEP, Hunter JS, Hunter WG (2005) Statistics for experimenters: design, innovation, and discovery, 2nd edn. Wiley, HobokenGoogle Scholar
  6. Coelho PHSL, Marchesin MS, Morales AR, Bartoli JR (2014) Electrical percolation, morphological and dispersion properties of MWCNT/PMMA nanocomposites. Mater Res 17:127–132. CrossRefGoogle Scholar
  7. Dyachkova TP, Melezhyk AV, Gorsky SY, Anosova IV, Tkachev AG (2013) Some aspects of functionalization and modification of carbon nanomaterials. Nanosyst Phys Chem Math 4:605–662Google Scholar
  8. Dyke CA, Tour JM (2004) Covalent functionalization of single-walled carbon nanotubes for materials applications. J Phys Chem A 108:11151–11159. CrossRefGoogle Scholar
  9. Grossiord N, Loos J, Reveg O, Koning CE (2006) Toolbox for dispersing carbon nanotubes into polymers to get conductive nanocomposites. Chem Mater 18:1089–1099. CrossRefGoogle Scholar
  10. Hasanzadeh I, Barikani M, Mahdavian AR (2016) Ultrasound-assisted emulsion polymerization of poly(methyl methacrylate-co-butyl acrylate): effect of initiator content and temperature. Polym Eng Sci 56:214–221. CrossRefGoogle Scholar
  11. Herbst MH, Macêdo MIF, Rocco AM (2004) Tecnologia dos nanotubos de carbono: tendências e perspectivas de uma área multidisciplinar. Quim Nova 27:986–992CrossRefGoogle Scholar
  12. Hill DE, Lin Y, Rao AM, Allard LF, Sun Y-P (2002) Functionalization of carbon nanotubes with polystyrene. Macromolecules 35:9466–9471. CrossRefGoogle Scholar
  13. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. CrossRefGoogle Scholar
  14. Jia Z, Wang Z, Xu C, Liang J, Wei B, Wu D, Zhu S (1999) Study on poly(methyl metacrylate)/carbon nanotube composites. Mater Sci Eng, A 271:395–400. CrossRefGoogle Scholar
  15. Kaempgen M, Duesbrg GS, Roth S (2005) Transparent carbon nanotube coatings. Appl Surf Sci 252:425–429. CrossRefGoogle Scholar
  16. Kim HM, Choi M-S, Joo J, Cho SJ, Yoon HS (2006) Complexity in charge transport for multiwalled carbon nanotube and poly(methyl methacrylate) composites. Phys Rev B 74(054202):1–7. Google Scholar
  17. Kim ST, Choi HJ, Hong SM (2007) Bulk polymerized polystyrene in the presence of multiwalled carbon nanotubes. Colloid Polym Sci 285:593–598. CrossRefGoogle Scholar
  18. Kirkpatrick S (1973) Percolation and conduction. Rev Mod Phys 45:574–588. CrossRefGoogle Scholar
  19. Kuester S, Barra GMO, Ferreira JC Jr, Soares BG, Demarquette NR (2016) Electromagnetic interference shielding and electrical properties of nanocomposites based on poly (styrene-b-ethylene-ranbutylene-b-styrene) and carbon nanotubes. Eur Polym J 77:43–53. CrossRefGoogle Scholar
  20. Lavall RL, De Sales JA, Borges RS, Calado HDR, Machado JC, Windmöller D, Silva GG, Lacerda RG, Ladeira LO (2010) Nanocompósitos de poliuretana termoplástica e nanotubos de carbono de paredes múltiplas para dissipação eletrostática. Quim Nova 33:133–140CrossRefGoogle Scholar
  21. Lipinska ME, Rebelo SLH, Pereira MFR, Gomes JANF, Freire C, Figueiredo JL (2012) New insights into the functionalization of multi-walled carbon nanotubes with aniline derivatives. Carbon 50:3280–3294. CrossRefGoogle Scholar
  22. Liu J, Liu T, Kumar S (2005) Effect of solvent solubility parameter on SWCNT dispersion in PMMA. Polymer 46:3419–3424. CrossRefGoogle Scholar
  23. Ma P-C, Siddiqui NA, Marom G, Kim J-K (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Compos A 41:1345–1367. CrossRefGoogle Scholar
  24. Marimuthu E, Murugesan V (2017) Influence of ultrasonic condition on phase transfer catalyzed radical polymerization of methyl methacrylate in two phase system—a kinetic study. Ultrason Sonochem 38:560–569. CrossRefGoogle Scholar
  25. McNally T, Pötschke P, Halley P, Murphy M, Martin D, Bell SEJ, Brennan GP, Bein D, Lemoine P, Quinn JP (2005) Polyethylene multiwalled carbon nanotube composites. Polymer 46:8222–8232. CrossRefGoogle Scholar
  26. McNeill IC (1968) A study of the thermal degradation of methyl methacrylate polymers and copolymers by thermal volatilization analysis. Eur Polym J 4:21–30. CrossRefGoogle Scholar
  27. Ménard-Moyon C, Fabbro C, Prato M, Bianco A (2011) One-pot triple functionalization of carbon nanotubes. Chem Eur J 17:3222–3227. CrossRefGoogle Scholar
  28. Mir SM, Jafari SH, Khonakdar HA, Krause B, Pötschke P, Qazvinide NT (2016) A promising approach to low electrical percolation threshold in PMMA nanocomposites by using MWCNT-PEO predispersions. Mater Des 111:253–262. CrossRefGoogle Scholar
  29. Park SJ, Lim ST, Cho MS, Kim HM, Joo J, Choi HJ (2005) Electrical properties of multi-walled carbon nanotube/poly(methyl methacrylate) nanocomposite. Curr Appl Phys 5:302–304. CrossRefGoogle Scholar
  30. Piegat A, Jedrzejewska A, Pelech R, Pelech I (2016) Effect of carbon nanotube modification on poly(butylene terephthalate)-based composites. Chem Pap 70:801–810. CrossRefGoogle Scholar
  31. Pötschke P, Villmow T, Krause B (2013) Melt mixed PCL/MWCNT composites prepared at different rotation speeds: characterization of rheological, thermal, and electrical properties, molecular weight, MWCNT macrodispersion, and MWCNT length distribution. Polymer 54:3071–3078. CrossRefGoogle Scholar
  32. Price GJ (1996) Ultrasonically enhanced polymer synthesis. Ultrason Sonochem 3:S229–S238. CrossRefGoogle Scholar
  33. Price GJ, Norris DJ, West PJ (1992) Polymerization of methyl methacrylate initiated by ultrasound. Macromolecules 25:6447–6454. CrossRefGoogle Scholar
  34. Price GJ, West PJ, Smith PF (1994) Control of polymer structure using power ultrasound. Ultrason Sonochem 1:S51–S56. CrossRefGoogle Scholar
  35. Qian D, Wagner GJ, Liu WK, Yu MF, Ruoff RS (2002) Mechanics of carbon nanotubes. Appl Mech Rev 55:495–533. CrossRefGoogle Scholar
  36. Ramadan AA, Gould RD, Ashour A (1994) On the Van der Pauw method of resistivity measurements. Thin Solids Films 239:272–275. CrossRefGoogle Scholar
  37. Rodrigues MI, Iemma AF (2014) Experimental design and process optimization, 1st edn. CRC Press, Boca RatonGoogle Scholar
  38. Saito R, Hofmann M, Dresselhaus G, Jorio A, Dresselhaus MS (2011) Raman spectroscopy of graphene and carbon nanotubes. Adv Phys 60:413–550. CrossRefGoogle Scholar
  39. Schmidt RH, Kinloch IA, Burgess AN, Windle AH (2007) The effect of aggregation on the electrical conductivity of spin-coated polymer/carbon nanotube composite films. Langmuir 23:5707–5712. CrossRefGoogle Scholar
  40. Stobinsk L, Lesiak B, Kövér L, Tóth J, Biniak S, Trykowski G, Judek J (2010) Multiwall carbon nanotubes purification and oxidation by nitric acid studied by the FTIR and electron spectroscopy methods. J Alloys Compd 501:77–84. CrossRefGoogle Scholar
  41. Suslick KS, Price GJ (1999) Applications of ultrasound to materials chemistry. Annu Rev Mater Sci 29:295–326. CrossRefGoogle Scholar
  42. Tasis D, Tagmatarchis N, Bianco A, Prato M (2006) Chemistry of carbon nanotubes. Chem Rev 106:1105–1136. CrossRefGoogle Scholar
  43. Van Der Pauw LJ (1959) A method of measuring the resistivity and Hall coefficient on Lamellae of arbitrary shape. Philips Tech Rev 20:220–224Google Scholar
  44. Wang C, Guo Z-X, Fu S, Wu W, Zhu D (2004) Polymers containing fullerene or carbon nanotube structures. Prog Polym Sci 29:1079–1141. CrossRefGoogle Scholar
  45. Wang R, Tao J, Yu B, Dai L (2014) Characterization of multiwalled carbon nanotube-polymethyl methacrylate composite resins as denture base materials. J Prosthet Dent 111:318–326. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  • Jéssica M. Bressanin
    • 1
  • Valdir A. Assis Júnior
    • 2
  • Julio R. Bartoli
    • 1
  1. 1.School of Chemical EngineeringState University of Campinas, UNICAMPCampinasBrazil
  2. 2.School of Mechanical EngineeringState University of Campinas, UNICAMPCampinasBrazil

Personalised recommendations