Mechanical and optical properties of SiO2 thin films deposited on glass

  • Lukáš Šimurka
  • Radim Čtvrtlík
  • Jan Tomaštík
  • Gence Bektaş
  • Jan Svoboda
  • Klaus Bange
Original Paper


The optical and mechanical properties of amorphous SiO2 films deposited on soda-lime silicate float glass by reactive RF magnetron sputtering at room temperature were investigated in dependence of the process pressure. The densities of the films are strongly influenced by the process pressure and vary between 2.38 and 1.91 g cm−3 as the pressure changes from 0.27 to 1.33 Pa. The refractive indices of the films shift between 1.52 and 1.37, while the residual compressive stresses in the deposited films vary in the range from 440 to 1 MPa. Hardness and reduced elastic modulus values follow the same trend and decline with the increase of process pressure from 8.5 to 2.2 GPa and from 73.7 to 30.9 GPa, respectively. The abrasive wear resistance decreases with the density of the films.


SiO2 films Glass Mechanical properties Refractive index Residual stress 



This work was supported by the Operational Programme Research, Development, and Education-European Regional Development Fund, project No. CZ.02.1.01/0.0/0.0/16_013/0001403 of the Ministry of Education, Youth and Sports of the Czech Republic. JS acknowledges the support from the European Regional Development Fund OPPK (CZ.2.16/3.1.00/21545).


  1. Almeida R, Pantano CG (1990) Structural investigation of silica gel films by infrared spectroscopy. J Appl Phys 68:4225–4232. CrossRefGoogle Scholar
  2. Barranco A, Yubero F, Cotrino J et al (2001) Low temperature synthesis of dense SiO2 thin films by ion beam induced chemical vapor deposition. Thin Solid Films 396:9–15. CrossRefGoogle Scholar
  3. Bautista MC, Morales A (2003) Silica antireflective films on glass produced by the sol–gel method. Sol Energy Mater Sol Cells 80:217–225. CrossRefGoogle Scholar
  4. Beake BD, Smith JF (2002) High-temperature nanoindentation testing of fused silica and other materials. Philos Mag A Phys Condens Matter Struct Defects Mech Prop 82:2179–2186. Google Scholar
  5. Bogati S, Georg A, Graf W (2017) Sputtered Si3N4 and SiO2 electron barrier layer between a redox electrolyte and the WO3 film in electrochromic devices. Sol Energy Mater Sol Cells 159:395–404. CrossRefGoogle Scholar
  6. Boudaden J, Oelhafen P, Schuler A et al (2005) Multilayered Al2O3/SiO2 and TiO2/SiO2 coatings for glazed colored solar thermal collectors. Sol Energy Mater Sol Cells 89:209–218. CrossRefGoogle Scholar
  7. Bräuer G (1999) Large area glass coating. Surf Coat Technol 112:358–365. CrossRefGoogle Scholar
  8. Bräuer G, Szyszka B, Vergöhl M, Bandorf R (2010) Magnetron sputtering—milestones of 30 years. Vacuum 84:1354–1359. CrossRefGoogle Scholar
  9. Broadway DM, Lu Y (2012) Temperable three layer antireflective coating, coated article including temperable three layer antirefrlective coating, and/or method of making the same. US Patent 2012/0057236 A1, 8 Mar 2012Google Scholar
  10. Cathro K, Constable D, Solaga T (1984) Silica low-reflection coatings for collector covers, by a dip-coating process. Sol Energy 32:573–579. CrossRefGoogle Scholar
  11. Dehan E, Temple-Boyer P, Henda R et al (1995) Optical and structural properties of SiOx and SiNx materials. Thin Solid Films 266:14–19. CrossRefGoogle Scholar
  12. Duan G, Xing T, Li Y (2012) Preferential sputtering of Ar ion processing SiO2 mirror. In: Yang L, Ruch E, Li S (eds) Proceedings of the SPIE 8416, p 84162LGoogle Scholar
  13. Dzioba S, Rousina R (1994) Dielectric thin film deposition by electron cyclotron resonance plasma chemical vapor deposition for optoelectronics. J Vac Sci Technol B Microelectron Nanometer Struct 12:433. CrossRefGoogle Scholar
  14. Everitt NM, Davies MI, Smith JF (2011) High temperature nanoindentation—the importance of isothermal contact. Philos Mag 91:1221–1244. CrossRefGoogle Scholar
  15. González P, Fernández D, Pou J et al (1992) Photo-induced chemical vapour deposition of silicon oxide thin films. Thin Solid Films 218:170–181. CrossRefGoogle Scholar
  16. Green ML, Gusev EP, Degraeve R, Garfunkel EL (2001) Ultrathin (< 4 nm) SiO2 and Si–O–N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J Appl Phys 90:2057–2121. CrossRefGoogle Scholar
  17. Guanghui F, Jiafeng D, Donghui P, Ouli H (1989) The migration of alkali ions from glass substrates coated with sol–gel barrier films. J Non Cryst Solids 112:454–457. CrossRefGoogle Scholar
  18. Hammarberg E, Roos A (2003) Antireflection treatment of low-emitting glazings for energy efficient windows with high visible transmittance. Thin Solid Films 442:222–226. CrossRefGoogle Scholar
  19. Hoffman DW, Thornton JA (1977) The compressive stress transition in Al, V, Zr, Nb and W metal films sputtered at low working pressures. Thin Solid Films 45:387–396. CrossRefGoogle Scholar
  20. Jeong H, Cho J (2017) Fabrication and evaluation of protective SiOx layers using plasma-enhanced chemical vapor deposition. Surf Coat Technol 330:71–76. CrossRefGoogle Scholar
  21. Jeong S-H, Kim J-K, Kim B-S et al (2004) Characterization of SiO2 and TiO2 films prepared using rf magnetron sputtering and their application to anti-reflection coating. Vacuum 76:507–515. CrossRefGoogle Scholar
  22. Klemberg-Sapieha JE, Oberste-Berghaus J, Martinu L et al (2004) Mechanical characteristics of optical coatings prepared by various techniques: a comparative study. Appl Opt 43:2670–2679. CrossRefGoogle Scholar
  23. Lee CC, Jan DJ (2006) DC magnetron sputtering of Si to form SiO2 in low-energy ion beam. Vacuum 80:693–697. CrossRefGoogle Scholar
  24. Lee J, Choi B, Ji M et al (2009) Effect of barrier layers on the properties of indium tin oxide thin films on soda lime glass substrates. Thin Solid Films 517:4074–4077. CrossRefGoogle Scholar
  25. Leyland A, Matthews A (2000) On the significance of the H/E ratio in wear control: a nanocomposite coating approach to optimised tribological behaviour. Wear 246:1–11. CrossRefGoogle Scholar
  26. Li H, Vlassak JJ (2009) Determining the elastic modulus and hardness of an ultra-thin film on a substrate using nanoindentation. J Mater Res 24:1114–1126. CrossRefGoogle Scholar
  27. Li BQ, Kojima I, Zuo JM (2002) Surface evolution of ultrahigh vacuum magnetron sputter deposited amorphous SiO2 thin films. J Appl Phys 91:4082–4089. CrossRefGoogle Scholar
  28. Lisovskii IP, Litovchenko VG, Lozinskii VG, Steblovskii GI (1992) IR spectroscopic investigation of SiO2 film structure. Thin Solid Films 213:164–169. CrossRefGoogle Scholar
  29. Lorenz H (1991) Characterization of low temperature SiO2 and Si3N4 films deposited by plasma enhanced evaporation. J Vac Sci Technol B Microelectron Nanometer Struct 9:208. CrossRefGoogle Scholar
  30. Lucovsky G (1987) Low-temperature growth of silicon dioxide films: a study of chemical bonding by ellipsometry and infrared spectroscopy. J Vac Sci Technol B Microelectron Nanometer Struct 5:530. CrossRefGoogle Scholar
  31. Macchioni CV (1990) Mechanical properties of high deposition rate silica films. J Vac Sci Technol A Vac Surf Film 8:1340–1343. CrossRefGoogle Scholar
  32. Mazur M, Wojcieszak D, Domaradzki J et al (2013) TiO2/SiO2 multilayer as an antireflective and protective coating deposited by microwave assisted magnetron sputtering. Opto Electron Rev 21:233–238. CrossRefGoogle Scholar
  33. Moreno JA, Garrido B, Samitier J, Morante JR (1997) Analysis of geometrical effects on the behavior of transverse and longitudinal modes of amorphous silicon compounds. J Appl Phys 81:1933–1942. CrossRefGoogle Scholar
  34. Nandra SS (1990) High-rate sputter deposition of SiO2 and TiO2 films for optical applications. J Vac Sci Technol A Vac Surf Film 8:3179. CrossRefGoogle Scholar
  35. Nečas D, Klapetek P (2012) Gwyddion: an open-source software for SPM data analysis. Open Phys. Google Scholar
  36. Nielsen KH, Orzol DK, Koynov S et al (2014) Large area, low cost anti-reflective coating for solar glasses. Sol Energy Mater Sol Cells 128:283–288. CrossRefGoogle Scholar
  37. Nielsen KH, Karlsson S, Limbach R, Wondraczek L (2015) Quantitative image analysis for evaluating the abrasion resistance of nanoporous silica films on glass. Sci Rep 5:17708. CrossRefGoogle Scholar
  38. Olivares J, Wegmann E, Capilla J et al (2010) Sputtered SiO2 as low acoustic impedance material for Bragg mirror fabrication in BAW resonators. IEEE Trans Ultrason Ferroelectr Freq Control 57:23–29. CrossRefGoogle Scholar
  39. Oliver WC, Pharr GM (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583. CrossRefGoogle Scholar
  40. Parratt LG (1954) Surface studies of solids by total reflection of X-rays. Phys Rev 95:359–369. CrossRefGoogle Scholar
  41. Pérez G, Sanz JM (2002) Infrared characterisation of evaporated SiO thin films. Thin Solid Films 416:24–30. CrossRefGoogle Scholar
  42. Petersen KE, Guarnieri CR (1979) Young’s modulus measurements of thin films using micromechanics. J Appl Phys 50:6761–6766. CrossRefGoogle Scholar
  43. Pop SC, Abbaraju V, Brophy B et al (2014) A highly abrasive-resistant, long-lasting anti-reflective coating for PV module glass. In: 2014 IEEE 40th photovoltaic specialist conference (PVSC). IEEE, pp 2715–2719Google Scholar
  44. Raut HK, Nair AS, Dinachali SS et al (2013) Porous SiO2 anti-reflective coatings on large-area substrates by electrospinning and their application to solar modules. Sol Energy Mater Sol Cells 111:9–15. CrossRefGoogle Scholar
  45. Rebouta L, Capela P, Andritschky M et al (2012) Characterization of TiAlSiN/TiAlSiON/SiO2 optical stack designed by modelling calculations for solar selective applications. Sol Energy Mater Sol Cells 105:202–207. CrossRefGoogle Scholar
  46. Rochet F, Dufour G, Roulet H et al (1988) Modification of SiO through room-temperature plasma treatments, rapid thermal annealings, and laser irradiation in a nonoxidizing atmosphere. Phys Rev B 37:6468–6477. CrossRefGoogle Scholar
  47. Ruske M, Bräuer G, Pistner J et al (1999) Properties of SiO2 and Si3N4 layers deposited by MF twin magnetron sputtering using different target materials. Thin Solid Films 351:158–163. CrossRefGoogle Scholar
  48. Schuh CA, Packard CE, Lund AC (2006) Nanoindentation and contact-mode imaging at high temperatures. J Mater Res 21:725–736. CrossRefGoogle Scholar
  49. Shen L, Zeng K, Wang Y et al (2003) Determination of the hardness and elastic modulus of low-k thin films and their barrier layer for microelectronic applications. Microelectron Eng 70:115–124. CrossRefGoogle Scholar
  50. Song Y, Sakurai T, Maruta K et al (2000) Optical and structural properties of dense SiO, TaO and NbO thin films deposited by indirectly reactive sputtering technique. Thin Solid Films 59:755–763. Google Scholar
  51. Stachowiak G (2006) Low-e coating with high visible transmission. US Patent 7,090,921 B2, 15 Aug, 2006Google Scholar
  52. Stoney GG (1909) The tension of metallic films deposited by electrolysis. Proc R Soc A Math Phys Eng Sci 82:172–175. CrossRefGoogle Scholar
  53. Szczyrbowski J, Bräuer G, Ruske M et al (1999) New low emissivity coating based on TwinMag® sputtered TiO2 and Si3N4 layers. Thin Solid Films 351:254–259. CrossRefGoogle Scholar
  54. Tabata A, Matsuno N, Suzuoki Y, Mizutani T (1996) Optical properties and structure of SiO2 films prepared by ion-beam sputtering. Thin Solid Films 289:84–89. CrossRefGoogle Scholar
  55. Takashima S, Li Z, Chow TP (2013) Metal–oxide–semiconductor interface and dielectric properties of atomic layer deposited SiO2 on GaN. Jpn J Appl Phys 52:08JN24. CrossRefGoogle Scholar
  56. Theil JA, Tsu DV, Watkins MW et al (1990) Local bonding environments of Si–OH groups in SiO2 deposited by remote plasma-enhanced chemical vapor deposition and incorporated by postdeposition exposure to water vapor. J Vac Sci Technol A Vac Surf Film 8:1374–1381. CrossRefGoogle Scholar
  57. Thornton JA (1986) The microstructure of sputter-deposited coatings. J Vac Sci Technol A Vac Surf Film 4:3059–3065. CrossRefGoogle Scholar
  58. Thurn J, Cook RF (2002) Stress hysteresis during thermal cycling of plasma-enhanced chemical vapor deposited silicon oxide films. J Appl Phys 91:1988–1992. CrossRefGoogle Scholar
  59. Tompkins HG, Irene EA, Hill C, Carolina N (2005) Handbook of ellipsometry. William Andrew, New YorkGoogle Scholar
  60. Vanfleteren J, van Calster A, Rostaing JC et al (1992) Silicon dioxide films by RF sputtering for microelectronic and MEMS applications. Thin Solid Films 147–148:1066–1077. Google Scholar
  61. Volinsky AA, Vella JB, Gerberich WW (2003) Fracture toughness, adhesion and mechanical properties of low-K dielectric thin films measured by nanoindentation. Thin Solid Films 429:201–210. CrossRefGoogle Scholar
  62. Vorotilov KA, Orlova EV, Petrovsky VI (1992) Sol–gel silicon dioxide films. Thin Solid Films 209:188–194. CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2018

Authors and Affiliations

  1. 1.ŞİŞECAM Science and Technology CenterGebzeTurkey
  2. 2.Vitrum Laugaricio-Joint Glass Centre of the IIC SAS, TnU AD, and FChFT STUTrenčínSlovakia
  3. 3.Institute of Physics of the Czech Academy of SciencesJoint Laboratory of Optics of Palacký University and Institute of Physics AS CROlomoucCzech Republic
  4. 4.The Center for Solar Energy Research and Applications, Micro and NanotechnologyMiddle East Technical UniversityAnkaraTurkey
  5. 5.Institute of Macromolecular Chemistry AS CR, v. v. i.Prague 6Czech Republic
  6. 6.MK Consulting GmbHJugenheimGermany

Personalised recommendations