Skip to main content
Log in

Study of the copper effect in iron-gall inks after artificial ageing

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

Iron-gall inks consist of a mixture of vitriols (sulphates of certain metals), gall nut extracts and arabic gum. The association of the iron(II) sulphate present in vitriols, and the gallic acids present in the gall nut extracts induces, after exposure to oxygen, the formation of dark coloured compounds of ink. In addition to iron, this kind of inks contains other metals, such as copper, zinc, and nickel. Among them, copper could be considered the most important because, owing to its catalytic ability, it can be involved in the processes concerning formation and stability of iron complexes, which are responsible for the ink dark colour. For this purpose, four different iron-gall inks containing increasing amounts of copper sulphate were prepared according to a traditional receipt and applied on paper supports. The ink-stained paper specimens were subjected to an intense analytical program to investigate their chemical and physical modifications after artificial ageing (both temperature/humidity and ultraviolet light ageing). The role of copper in the iron-gall inks was evaluated using optical microscopy, colorimetric measurements, X-ray fluorescence (XRF), X-ray diffraction analysis (XRD), scanning electron microscopy coupled with energy-dispersive X-ray spectroscopy (SEM–EDX) and Fourier transform infrared spectroscopy (FTIR). For the evaluation of the oxidation state of iron and copper, X-ray absorption spectroscopy (XANES) was used. All results indicate that the presence of copper in iron-gall ink causes colour variation, affects the migratory behaviour of iron in the paper, increases the formation of secondary products particularly when ageing process based on temperature/humidity variations is considered.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Banik G, Stachelberger H, Mairinger F, Vendl A, Ponahlo J (1981) Analytical investigations of the problem of “Kupferfrafβ”. In illuminated manuscripts. Mikrochim Acta 1:49–55

    Article  CAS  Google Scholar 

  • Bicchieri M, Monti M, Piantanida G, Sodo A (2008) All that is iron-ink is not always iron gall ink! J Raman Spectrosc 39:1074–1078. https://doi.org/10.1002/jrs.1995

    Article  CAS  Google Scholar 

  • Bitossi G, Giorgi R, Mauro M, Salvadori B, Dei L (2005) Spectroscopic techniques in cultural heritage conservation: a survey. Appl Spectrosc Rev 40(3):187–228. https://doi.org/10.1081/ASR-200054370

    Article  CAS  Google Scholar 

  • Bulska E, Wagner B (2004) A study of ancient manuscripts exposed to iron-gall ink corrosion. Elsevier, Amsterdam, pp 755–788 (chap. 17)

    Google Scholar 

  • Burgaud C, Rouchon V, Refait P, Wattiaux A (2008) Mossbauer spectrometry applied to the study of laboratory samples made of iron gall ink. Appl Phys A 92:257–262. https://doi.org/10.1007/s00339-008-4503-5

    Article  CAS  Google Scholar 

  • Canepari PM (1718) De atramentis cuiuscumque generis, Rotterdam

  • Cicco D, Aquilanti G, Minicucci M, Principi E, Novello N, Cognigni A, Olivi L (2009) J of Phys: Conference Series

  • Faubel W, Staub S, Simon R, Heissler S, Pataki A, Banik G (2007) Non-destructive analysis for the investigation of decomposition phenomena of historical manuscripts and prints. Spectrochim Acta Part B 62:669–676. https://doi.org/10.1016/j.sab.2007.03.029

    Article  CAS  Google Scholar 

  • Fichera GV, Dondi P, Licchelli M, Lombardi L, Ridolfi S, Malagodi M (2016) A combined approach for the attribution of handwriting: the case of Antonio Stradivari’s manuscripts. Appl Phys A 122:970. https://doi.org/10.1007/s00339-016-0497-6

    Article  CAS  Google Scholar 

  • Giuli G, Paris E, Pratesi G, Koeberl C, Cipriani C (2003) Iron oxidation state in the Fe-rich layer and silica matrix of Libyan desert glass: a high-resolution XANES study. Meteorit Planet Sci 38(8):1181–1186. https://doi.org/10.1111/j.1945-5100.2003.tb00306.x

    Article  CAS  Google Scholar 

  • Hahn O (2010) Analyses of iron gall and carbon inks by means of X-ray fluorescence analysis: a non-destructive approach in the field of archaeometry and conservation science. Restaurator 31:41–64. https://doi.org/10.1515/rest.2010.003

    Article  CAS  Google Scholar 

  • Hahn O, Malzer W, Kanngiesser B, Beckhoff B (2004) Characterization of iron-gall inks in historical manuscripts and music compositions using X-ray fluorescence spectrometry. X-Ray Spectrom 33:234–239. https://doi.org/10.1002/xrs.677

    Article  CAS  Google Scholar 

  • James C (2001) The evolution of Iron Gall ink and its aesthetical consequences. In: The Iron Gall Ink Meeting, Newcastle University of Northumbria, 4–5 September 2000, Postprints, Newcastle upon Tyne, p 67–72

  • Jančovičova V, Čeppan M, Havlinova B, Rehakova M, Jakubikova Z (2007) Interactions in Iron Gall Inks. Chem Pap 61(5):391–397. https://doi.org/10.2478/s11696-007-0053-0

    Article  CAS  Google Scholar 

  • Kanngießer B, Hahn O, Wilke M, Nekat B, Malzer W, Erko A (2004) Investigation of oxidation and migration processes of inorganic compounds in ink-corroded manuscripts. Spectrochim Acta Part B 59:1511–1516. https://doi.org/10.1016/j.sab.2004.07.013

    Article  CAS  Google Scholar 

  • Kavak F (2006) Ink Production from Logwood (Alnus glutinosa L. gaertn) leaves by Extraction Method. M.S Thesis, GaziOsmanpaşa Üniversites

  • Kolar J, Strlič M, Budnar M, Malešič J, Šelih VS, Simčič J (2003) Stabilisation of corrosive iron gall inks. Acta Chim Slov 50:763–770

    CAS  Google Scholar 

  • Kolar J, Stolfa A, Strlič M, Pompe M, Pihlar B, Budnar M, Simcic J, Reissland B (2006) Historical iron gall ink containing documents—properties affecting their condition. Anal Chim Acta 555:167–174. https://doi.org/10.1016/j.aca.2005.08.073

    Article  CAS  Google Scholar 

  • Krekel C (1999) The chemistry of historical iron gall inks: understanding the chemistry of writing inks used to prepare historical documents. Int J Forensic Doc Exam 5:54–58

    CAS  Google Scholar 

  • La Camera D (2007) Crystal formations within iron gall ink: observations and analysis. J Am Inst Conserv 46(2):153–174

    Article  Google Scholar 

  • Malesic J, Sala M, Selih VS, Kocar D (2014) Evaluation of a method for treatment of iron gall ink corrosion on paper. Cellulose 21:2925–2936. https://doi.org/10.1007/s10570-014-0311-6

    Article  CAS  Google Scholar 

  • Manso M, Pessanha S, Carvalho ML (2006) Artificial aging processes in modern papers: X-ray spectrometry studies. Spectrochim Acta Part B 61:922–928. https://doi.org/10.1016/j.sab.2006.07.002

    Article  CAS  Google Scholar 

  • Manso M, Cardeira AM, Silva M, Le Gac A, Pessanha S, Guerra M, Caldeira AT, Candeias A, Carvalho ML (2015) The mysterious halos in iron gall ink manuscripts: an analytical explanation. Appl Phys A 118:1107–1111. https://doi.org/10.1007/s00339-014-8924-z

    Article  CAS  Google Scholar 

  • Neevel JG (1995) Phytate: a potential conservation agent for the treatment of ink corrosion caused by irongall inks. Restaurator 16:143–160

    CAS  Google Scholar 

  • Neevel JG, Mensch K (1999) The behaviour of iron ions and sulfuric acid during iron gall ink corrosion. In: Bridgland J (ed), 12th Triennial Meeting, Lyon, ICOM Committee for Conservation, James and James, London, vol. 2, p 528–533

  • Ponce A, Brostoff LB, Gibbons SK, Zavalij P, Viragh C, Hooper J, Alnemrat S, Gaskell KJ, Eichhorn B (2016) Elucidation of the Fe(III) gallate structure in historical iron gall ink. Anal Chem 88:5152–5158. https://doi.org/10.1021/acs.analchem.6b00088

    Article  CAS  PubMed  Google Scholar 

  • Potthast A, Henniges U, Banik G (2008) Iron gall ink-induced corrosion of cellulose: aging, degradation and stabilization. Part 1: model paper studies. Cellulose. https://doi.org/10.1007/s10570-008-9237-1

    Article  Google Scholar 

  • Ravel B, Newville M (2005) ATHENA, ARTEMIS, HEPHAESTUS: data analysis for X-ray absorption spectroscopy using IFEFFIT. J Synchrotron Radiat 12:537–541. https://doi.org/10.1107/S0909049505012719

    Article  CAS  PubMed  Google Scholar 

  • Reháková M, Čeppan M, Vizárová K, Peller A, Stojkovičová D, Hricková M (2015) Study of stability of brown-gray inks on paper support. Herit Sci 3:8. https://doi.org/10.1186/s40494-015-0039-0

    Article  CAS  Google Scholar 

  • Rietveld HM (1969) A profile refinement method for nuclear and magnetic structures. J Appl Crystallogr 2:65–71

    Article  CAS  Google Scholar 

  • Rouchon V, Durocher B, Pellizzi E, Stordiau-Pallot J (2009) The water sensitivity of iron gall ink and its risk assessment. Stud in Conserv 54(4):236–254. https://doi.org/10.1179/sic.2009.54.4.236

    Article  CAS  Google Scholar 

  • Rouchon V, Pellizzi E, Duranton M, Vanmeert F, Janssens K (2011) Combining XANES, ICP-AES, and SEM/EDS for the study of phytate chelating treatments used on iron gall ink damaged manuscripts. J Anal At Spectrom 26:2434–2441

    Article  CAS  Google Scholar 

  • Rouchon-Quillet V, Remazeilles C, Bernard J, Wattiaux A, Fournes L (2004) The impact of gallic acid on iron gall ink corrosion. Appl Phys A 79:389–392. https://doi.org/10.1007/s00339-004-2541-1

    Article  CAS  Google Scholar 

  • Selih VS, Strlič M, Kolar J, Pihlar B (2007) The role of transition metals in oxidative degradation of cellulose. Polym Degrad Stab 92:1476–1481. https://doi.org/10.1016/j.polymdegradstab.2007.05.006

    Article  CAS  Google Scholar 

  • Sistach MC, Gibert JM, Areal R (1999) Ageing of laboratory iron gall inks studied by reflectance spectrometry. Restaurator 20:151–166

    CAS  Google Scholar 

  • Steemers T (2006) Damage survey of archives containing iron gall inks. In: Kolar J, Strlič M (eds) Iron gall inks: on manufacture, characterisation, degradation and stabilization. National and University Library, Ljubljana, pp 20–24

    Google Scholar 

  • Strlič M, Kolar J, Šelih V, Kočar D, Pihlara B (2003) A comparative study of several transition metals in Fenton-like reaction systems at circum-neutral pH. Acta Chim Slov 50:619–632

    Google Scholar 

  • Strlič M, Šelih V, Kolar J (2006) Model studies of the catalytic role of transitional metals. In: Kolar J, Strlič M (eds) Iron gall inks: on manufacture, characterisation, degradation and stabilization. National and University Library, Ljubljana

    Google Scholar 

  • UNI EN 15886 (2010) Conservazione dei Beni Culturali, Metodi di prova, Misura del colore delle superfici

  • Ursescu M, Malutan T, Ciovica S (2009) Iron gall inks influence on papers’ thermal degradation FTIR spectroscopy applications. Eur J Sci Theol 5(3):71–84

    Google Scholar 

  • Wenk HR, Lutterotti L, Vogel SC (2010) Rietveld texture analysis from TOF neutron diffraction data. Powder Diffr 25:283–297. https://doi.org/10.1154/1.3479004

    Article  CAS  Google Scholar 

  • Wilke M, Farges F, Petit P, Brown JRGE, Martin F (2001) Oxidation state and coordination of Fe in minerals: an Fe K-XANES spectroscopic study. Am Mineralogist 86:714–730

    Article  CAS  Google Scholar 

  • Wilke M, Hahn O, Woodland AB, Rickers K (2009) The oxidation state of iron determined by Fe K-edge XANES—application to iron gall ink in historical manuscripts. J Anal At Spectrom 24:1364–1372. https://doi.org/10.1039/b904438h

    Article  CAS  Google Scholar 

  • Wouters J, Banik G (2000) Inks from the Middle Ages: old recipes, modern analysis and future decay. In: Cockshaw P, Bergen-Pantens CVD (eds) Les Chroniques de Hainaut ou les ambitions d’un prince bouguignon. Brepols Publishers, Turnhout, pp 141–148

    Google Scholar 

Download references

Acknowledgements

The authors would like to gratefully acknowledge Claudio Canevari (Civica Scuola di Liuteria, Milan, Italy) and Chiara Milanese (Department of Chemistry, University of Pavia, Italy) for supporting the research by inks preparation and XRD spectra interpretation. We also thank Dr. Greta Lumini for her support during all the experimental steps of the research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marco Malagodi.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fichera, G.V., Malagodi, M., Cofrancesco, P. et al. Study of the copper effect in iron-gall inks after artificial ageing. Chem. Pap. 72, 1905–1915 (2018). https://doi.org/10.1007/s11696-018-0412-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-018-0412-z

Keywords

Navigation