The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode

Abstract

It has always been a widespread concern that countless waste cigarette butts cause resource waste and environmental pollution, so it is necessary to explore their recovery and reutilization. For this purpose, waste cigarette butts were recycled via pyrolysis carbonization at 700 °C and 800 °C for sodium ion battery (SIB) anode, respectively. The results suggested that the micro-structure and electrochemical Na-storage performances of N-doped waste cigarette butts hard carbon (NWHC) were affected by the carbonization temperature. For example, NWHC carbonized at 700 °C (NWHC-700) possessed lower degree of graphitization, higher content of N element and larger interlayer spacing than NWHC at 800 °C (NWHC-800). And also, NWHC-700 anode delivered the reversible discharge capacities of 300 mAh g−1 at 25 mA g−1 for 200 cycles and 135 mAh g−1 even at 1500 mA g−1 for 2000 cycles, higher than 241 mAh g−1 and 105 mAh g−1 of NWHC-800 anode, respectively. More disordered micro-structure, lower degree of graphitization, larger interlayer spacing and higher content of N element of NWHC-700 anode may be jointly responsible for higher electrochemical Na-storage performances, which would delay the afflux of the waste cigarette butts into the waste streams.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

References

  1. Blankenship T, Mokaya R (2017) Cigarette butt-derived carbons have ultra-high surface area and unprecedented hydrogen storage capacity. Energy Environ Sci 10(12):2552–2562. https://doi.org/10.1039/c7ee02616a

    CAS  Article  Google Scholar 

  2. Cao Y, Xiao L, Sushko M, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf L, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12(7):3783–3787. https://doi.org/10.1021/nl3016957

    CAS  Article  PubMed  Google Scholar 

  3. Ciric-Marjanovic G, Pasti I, Gavrilov N, Janosevic A, Mentus S (2013) Carbonised polyaniline and polypyrrole: towards advanced; nitrogen-containing carbon materials. Chem Pap 67(8):781–813. https://doi.org/10.2478/s11696-013-0312-1

    CAS  Article  Google Scholar 

  4. Dai D, Li B, Tang H, Chang K, Jiang K, Chang Z, Yuan X (2016) Simultaneously improved capacity and initial Coulombic efficiency of Li-rich cathode Li[Li0.2Mn0.54Co0.13Ni0.13]O2 by enlarging crystal cell from a nanoplate precursor. J Power Sources 307(1):665–672. https://doi.org/10.1016/j.jpowsour.2016.01.046

    CAS  Article  Google Scholar 

  5. Deng X, Wei Z, Cui C, Liu Q, Wang C, Ma J (2018) Oxygen-deficient anatase TiO2@C nanospindles with pseudocapacitive contribution for enhancing lithium storage. J Mater Chem A 6(9):4013–4022. https://doi.org/10.1039/C7TA11301C

    CAS  Article  Google Scholar 

  6. El-Hendawy A (2006) Variation in the FTIR spectra of a biomass under impregnation, carbonization and oxidation conditions. J Anal Appl Pyrolysis 75(2):159–166. https://doi.org/10.1016/j.jaap.2005.05.004

    CAS  Article  Google Scholar 

  7. Gaddam R, Niaei A, Hankel M, Searles D, Kumar N, Zhao X (2017) Capacitance-enhanced sodium-ion storage in nitrogen-rich hard carbon. J Mater Chem A 5(42):22186–22192. https://doi.org/10.1039/C7TA06754B

    CAS  Article  Google Scholar 

  8. Han S, Jung D, Jeong J, Oh E (2014) Effect of pyrolysis temperature on carbon obtained from green tea biomass for superior lithium ion battery anodes. Chem Eng J 254(7):597–604. https://doi.org/10.1016/j.cej.2014.06.021

    CAS  Article  Google Scholar 

  9. Harris P (2013) Fullerene-like models for microporous carbon. J Mater Sci 48(2):565–577. https://doi.org/10.1007/s10853-012-6788-1

    CAS  Article  Google Scholar 

  10. Hasegawa G, Kanamori K, Kannari N, Ozaki J, Nakanishi K, Abe T (2016) Studies on electrochemical sodium storage into hard carbons with binder-free monolithic electrodes. J Power Sources 318(1):41–48. https://doi.org/10.1016/j.jpowsour.2016.04.013

    CAS  Article  Google Scholar 

  11. Hou H, Dai Z, Liu X, Yao Y, Liao Q, Yu C, Li D (2018) Reutilization of the expired tetracycline for lithium ion battery anode. Sci Total Environ 630(1):495–501. https://doi.org/10.1016/j.scitotenv.2018.02.126

    CAS  Article  PubMed  Google Scholar 

  12. Islami F, Torre L, Jemal A (2015) Global trends of lung cancer mortality and smoking prevalence. Transl Lung Cancer Res 4(4):327–338. https://doi.org/10.3978/j.issn.2218-6751.2015.08.04

    CAS  Article  PubMed  PubMed Central  Google Scholar 

  13. Jarvis M (2004) Why people smoke. Br Med J 328(7434):277–279. https://doi.org/10.1136/bmj.328.7434.277

    Article  Google Scholar 

  14. Kumar N, Baek J (2015) Doped graphene supercapacitors. Nanotechnology 26(49):492001. https://doi.org/10.1088/0957-4484/26/49/492001

    CAS  Article  PubMed  Google Scholar 

  15. Kumar N, Gaddam R, Varanasi S, Yang D, Bhatia S, Zhao X (2016) Sodium ion storage in reduced graphene oxide. Electrochim Acta 214:319–325. https://doi.org/10.1016/j.electacta.2016.08.058

    CAS  Article  Google Scholar 

  16. Lee M, Kim G, Song H, Park S, Yi J (2014) Preparation of energy storage material derived from a used cigarette filter for a supercapacitor electrode. Nanotechnology 25(34):345601. https://doi.org/10.1088/0957-4484/25/34/345601

    CAS  Article  PubMed  Google Scholar 

  17. Li B, Li Y, Dai D, Chang K, Tang H, Chang Z, Wang C, Yuan X, Wang H (2015) Facile and nonradiation pretreated membrane as a high conductive separator for Li-ion batteries. ACS Appl Mater Inter 7(36):20184–20189. https://doi.org/10.1021/acsami.5b05718

    CAS  Article  Google Scholar 

  18. Li W, Huang J, Feng L, Cao L, Ren Y, Li R, Xu Z, Li J, Yao C (2017a) Controlled synthesis of macroscopic three-dimensional hollow reticulate hard carbon as long-life anode materials for Na-ion batteries. J Alloys Compd 716(1):210–219. https://doi.org/10.1016/j.jallcom.2017.05.062

    CAS  Article  Google Scholar 

  19. Li Z, Jian Z, Wang X, Rodrıguez-Perez I, Bommier C, Ji X (2017b) Hard carbon anodes of sodium-ion batteries: undervalued rate capability. Chem Commun 53(17):2610–2613. https://doi.org/10.1039/C7CC00301C

    CAS  Article  Google Scholar 

  20. Liao Q, Hou H, Duan J, Liu S, Yao Y, Dai Z, Yu C, Li D (2017) Composite sodium p-toluenesulfonate/polypyrrole/TiO2 nanotubes/Ti anode for sodium ion battery. Int J Hydrog Energy 42(17):12414–12419. https://doi.org/10.1016/j.ijhydene.2017.03.116

    CAS  Article  Google Scholar 

  21. Liu P, Li Y, Hu Y, Li H, Chen L, Huang X (2016) A waste biomass derived hard carbon as high-performance anode material for sodium-ion batteries. J Mater Chem A 4(34):13046–13052. https://doi.org/10.1039/C6TA04877C

    CAS  Article  Google Scholar 

  22. Lotfabad E, Ding J, Cui K, Kohandehghan A, Kalisvaart W, Hazelton M, Mitlin D (2015) High-density sodium and lithium ion battery anodes from banana peels. ACS Nano 8(7):7115–7129. https://doi.org/10.1021/nn502045y

    CAS  Article  Google Scholar 

  23. Orinakova R, Fedorkova A, Orinak A (2013) Effect of PPy/PEG conducting polymer film on electrochemical performance of LiFePO4 cathode material for Li-ion batteries. Chem Pap 67(8):860–875. https://doi.org/10.2478/s11696-013-0350-8

    CAS  Article  Google Scholar 

  24. Ou J, Yang L, Zhang Z, Xi X (2017) Nitrogen-doped porous carbon derived from horn as an advanced anode material for sodium ion batteries. Microporous Mesoporous Mater 237(1):23–30. https://doi.org/10.1016/j.micromeso.2016.09.013

    CAS  Article  Google Scholar 

  25. Qin D, Chen S (2017) A sustainable synthesis of biomass carbon sheets as excellent performance sodium ion batteries anode. J Solid State Electr 21(5):1305–1312. https://doi.org/10.1007/s10008-016-3485-z

    CAS  Article  Google Scholar 

  26. Selvamani V, Ravikumar R, Suryanarayanan V, Velayutham D, Gopukumar S (2016) Garlic peel derived high capacity hierarchical N-doped porous carbon anode for sodium/lithium ion cell. Electrochim Acta 190(1):337–345. https://doi.org/10.1016/j.electacta.2016.01.006

    CAS  Article  Google Scholar 

  27. Shin J, Lee C, Lee K, Eun K (2001) Effect of residual stress on the Raman-spectrum analysis of tetrahedral amorphous carbon films. Appl Phys Lett 78(5):631–633. https://doi.org/10.1063/1.1343840

    CAS  Article  Google Scholar 

  28. Slaughter E, Gersberg R, Watanabe K, Rudolph J, Stransky C, Novotny T (2011) Toxicity of cigarette butts, and their chemical components, to marine and freshwater fish. Tob Control 20(Suppl 1):i25–i29. https://doi.org/10.1136/tc.2010.040170

    Article  PubMed  PubMed Central  Google Scholar 

  29. Smith E, Novotny T (2011) Whose butt is it? tobacco industry research about smokers and cigarette butt waste. Tob Control 20(Suppl 1):i2–i9. https://doi.org/10.1136/tc.2010.040105

    Article  PubMed  PubMed Central  Google Scholar 

  30. Stejskal J, Sapurina I, Trchová M, Sedenkova I, Kovarova J, Kopecka J, Prokes J (2015) Coaxial conducting polymer nanotubes: polypyrrole nanotubes coated with polyaniline or poly(-phenylenediamine) and products of their carbonisation. Chem Pap 69(10):1341–1349. https://doi.org/10.1515/chempap-2015-0152

    CAS  Article  Google Scholar 

  31. Tomšík E, Morávková Z, Stejskal J, Trchová M, Šálek P, Kovářová J, Zemek J, Cieslar M, Prokeš J (2013) Multi-wall carbon nanotubes with nitrogen-containing carbon coating. Chem Pap 67(8):1054–1065. https://doi.org/10.2478/s11696-013-0348-2

    CAS  Article  Google Scholar 

  32. Wang J, Li X, Du X, Wang J, Ma H, Jing X (2017a) Polypyrrole composites with carbon materials for supercapacitors. Chem Pap 71(2):293–316. https://doi.org/10.1007/s11696-016-0048-9

    CAS  Article  Google Scholar 

  33. Wang P, Zhu X, Wang Q, Xu X, Zhou X, Bao J (2017b) Kelp-derived hard carbons as advanced anode materials for sodium-ion batteries. J Mater Chem A 5(12):5761–5769. https://doi.org/10.1039/C7TA00639J

    CAS  Article  Google Scholar 

  34. Wei Y, Hu Q, Cao Y, Fang D, Xu W, Jiang M, Huang J, Liu H, Fan X (2017) Polypyrrole nanotube arrays on carbonized cotton textile for aqueous sodium battery. Org Electron 46(1):211–217. https://doi.org/10.1016/j.orgel.2017.04.008

    CAS  Article  Google Scholar 

  35. Wiggins-Camacho J, Stevenson K (2015) Effect of nitrogen concentration on capacitance, density of states, electronic conductivity, and morphology of N-doped carbon nanotube electrodes. J Phys Chem C 113(44):19082–19090. https://doi.org/10.1021/jp907160v

    CAS  Article  Google Scholar 

  36. Yang S, Feng X, Zhi L, Cao Q, Maier J, Mullen K (2010) Nanographene-constructed hollow carbon spheres and their favorable electroactivity with respect to lithium storage. Adv Mater 22(7):838–842. https://doi.org/10.1002/adma.200902795

    CAS  Article  PubMed  Google Scholar 

  37. Yang T, Qian T, Wang M, Shen X, Xu N, Sun Z, Yan C (2016a) A sustainable route from biomass byproduct okara to high content nitrogen-doped carbon sheets for efficient sodium ion batteries. Adv Mater 28(3):539–545. https://doi.org/10.1002/adma.201503221

    CAS  Article  PubMed  Google Scholar 

  38. Yang Y, Qiu M, Liu L, Su D, Pi Y, Yan G (2016b) Nitrogen-doped hollow carbon nanospheres derived from dopamine as high-performance anode materials for sodium-ion batteries. Nano 11(11):1–9. https://doi.org/10.1142/S1793292016501241

    CAS  Article  Google Scholar 

  39. Yu F, Wang M, Huang B, Peng Q, Huang Y (2017) Acid-treatment effect on the N-doped porous carbon obtained from fish scales for Cr(VI) removal. Chem Pap 71(10):2261–2269. https://doi.org/10.1007/s11696-017-0220-x

    CAS  Article  Google Scholar 

  40. Yu C, Hou H, Liu X, Yao Y, Liao Q, Dai Z, Li D (2018) Old-loofah-derived hard carbon for long cyclicity anode in sodium ion battery. Int J Hydrog Energy 43(6):3253–3260. https://doi.org/10.1016/j.ijhydene.2017.12.151

    CAS  Article  Google Scholar 

  41. Zhang H, Deng Q, Zhou A, Liu X, Li J (2014) Porous Li2C8H4O4 coated with N-doped carbon by using CVD as an anode material for Li-ion batteries. J Mater Chem A 2(16):5696–5702. https://doi.org/10.1039/C3TA14720G

    CAS  Article  Google Scholar 

  42. Zhang J, Zhang G, Qi M, Hu H, Ma X (2018) Co-production of hydrogen-rich gas and porous carbon by partial gasification of coal char. Chem Pap 72(2):273–287. https://doi.org/10.1007/s11696-017-0278-5

    CAS  Article  Google Scholar 

  43. Zhao G, Zou G, Qiu X, Li S, Guo T, Hou H, Ji X (2017a) Rose-like N-doped porous carbon for advanced sodium storage. Electrochim Acta 240(1):24–30. https://doi.org/10.1016/j.electacta.2017.04.057

    CAS  Article  Google Scholar 

  44. Zhao P, Yu B, Sun S, Guo Y, Chang Z, Li Q, Wang C (2017b) High-performance anode of sodium ion battery from polyacrylonitrile/humic acid composite electrospun carbon fibers. Electrochim Acta 232(1):348–356. https://doi.org/10.1016/j.electacta.2017.02.159

    CAS  Article  Google Scholar 

  45. Zheng F, Yang Y, Chen Q (2014) High lithium anodic performance of highly nitrogen-doped porous carbon prepared from a metal-organic framework. Nat Commun 5(5):5261–5270. https://doi.org/10.1038/ncomms6261

    CAS  Article  PubMed  Google Scholar 

  46. Zheng Y, Wang Y, Lu Y, Hu Y, Li J (2017) A high-performance sodium-ion battery enhanced by macadamia shell derived hard carbon anode. Nano Energy 39(1):489–498. https://doi.org/10.1016/j.nanoen.2017.07.018

    CAS  Article  Google Scholar 

  47. Zhu J, Chen C, Lu Y, Ge Y, Jiang H, Fu K, Zhang X (2015) Nitrogen-doped carbon nanofibers derived from polyacrylonitrile for use as anode material in sodium-ion batteries. Carbon 94(1):189–195. https://doi.org/10.1016/j.carbon.2015.06.076

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was financially supported by the National Natural Science Foundations of China (Grant Nos. 51566006 and 51363011), the 46th Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry in China (6488-20130039), the 19th Young Academic and Technical Leaders of Yunnan Province (1097-10978240), the Program of High-level Introduced Talent of Yunnan Province (10978125) and the Project of Key Discipline (14078232 and 14078311).

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Hongying Hou or Xianxi Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hou, H., Yu, C., Liu, X. et al. The effect of carbonization temperature of waste cigarette butts on Na-storage capacity of N-doped hard carbon anode. Chem. Pap. 73, 1237–1246 (2019). https://doi.org/10.1007/s11696-018-00674-w

Download citation

Keywords

  • Waste cigarette butts
  • N-doped hard carbon
  • Sodium ion battery
  • Anode