Advertisement

Chemical Papers

, Volume 72, Issue 4, pp 981–990 | Cite as

2-Deoxy-2-azidonucleoside analogs: synthesis and evaluation of antitumor and antimicrobial activity

  • Adam Mieczkowski
  • Patrycja Wińska
  • Marta Kaczmarek
  • Magdalena Mroczkowska
  • Damian Garbicz
  • Tomasz Pilżys
  • Michał Marcinkowski
  • Jan Piwowarski
  • Elżbieta Grzesiuk
Original Paper

Abstract

A series of ten pyrimidine nucleosides modified in 2′ position with azide or amine group was tested for the antibacterial, antifungal and cytotoxic activity. The cytotoxic effect was determined on three cancer (CCRF-CEM, MCF7, HeLa) and one normal (HEK293) cell lines, while antibacterial activity was evaluated on five bacterial strains. Among others, 2′-azido-2′deoxycytidine and 2′-amino-2′-deoxycytidine exhibited the strongest antiproliferative activity at 200 μM concentration, decreasing the viability of CCRF-CEM cells to 33 ± 1 and 36 ± 2%, respectively. Newly synthesized 2′-amino-2′-deoxythymidine exhibited cytotoxic effect exclusively toward HeLa cancer cell line, but not toward the normal HEK293 cells. Also, investigated compounds did not exhibit any antibacterial or antifungal activity at a concentration of 40 mM. The obtained results suggest that the presence of cytosine base is desirable for the appearance of cytotoxic effect, while the structural variations of the sugar ring play a minor role. Future modification of 2′-amino-2′-deoxythymidine could be a promising way to obtain more active anticancer substances.

Graphical Abstract

Keywords

Azidonucleosides Cytotoxicity Antifungal Antibacterial CCRF-CEM MCF7 HeLa HEK293 cell lines 

Notes

Acknowledgements

The equipment used was sponsored in part by the Centre for Preclinical Research and Technology (CePT), a project co-sponsored by European Regional Development Fund and Innovative Economy, The National Cohesion Strategy of Poland. We thank Jacek Olędzki (IBB PAS) for recording ES-MS spectra.

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

References

  1. Akerblom L (1985) Azidocytidine is incorporated into RNA of 3T6 mouse fibroblasts. FEBS 193:203–207.  https://doi.org/10.1016/0014-5793(85)80151-4 CrossRefGoogle Scholar
  2. Bauer AW, Kirby WM, Sherris JC, Turck M (1966) Antibiotic susceptibility testing by a standardized single disc method. Am J Clin Pathol 36:493–496CrossRefGoogle Scholar
  3. Gold L, Pieken W, Tasset D, Janjic N, Kirschenheuter GP, Polisky B, Jayasena S, Biesecker, G, Smith D, Jenison RD (1995) PCT Int. Appl. WO 9507364 A1 1995.03.16Google Scholar
  4. Bjursell G (1978) Effects of 2′-deoxy-2′-azidocytidine on polyoma virus DNA replication: evidence for rolling circle-type mechanism. J Virol 26:136–142Google Scholar
  5. Bjursell G, Skoog L, Thelander L, Soderman G (1977) 2′-Deoxy-2′-azidocytidine inhibits the initiation of polyoma DNA synthesis. Proc Natl Acad Sci USA 74:5310–5313CrossRefGoogle Scholar
  6. Bobek M, Cheng YC, Bloch A (1978) Novel arabinofuranosyl derivatives of cytosine resistant to enzymatic deamination and possessing potent antitumor activity. J Med Chem 21:597–598.  https://doi.org/10.1021/jm00205a001 CrossRefGoogle Scholar
  7. Cacciamani T, Vita A, Cristalli G, Vincenzetti S, Natalini P, Ruggieri S, Amici A, Magni G (1991) Purification of human cytidine deaminase: molecular and enzymatic characterization and inhibition by synthetic pyrimidine analogs. Arch Biochem Biophys 290:285–292.  https://doi.org/10.1016/0003-9861(91)90543-R CrossRefGoogle Scholar
  8. Cheng YC, Derse D, Tan RS, Dutschman G, Bobek M, Schroeder A, Bloch A (1981) Biological and biochemical effects of 2′-azido-2′-deoxyarabinofuranosylcytosine on human tumor cells in vitro. Cancer Res 41:3144–3149Google Scholar
  9. De Clerck E, Balzarini J, Descamps J, Eckstein F (1980) Antiviral, antimetabolic and antineoplastic activities of 2′- or 3-amino or –azido-substituted deoxyribonucleosides. Biochem Pharmacol 29:1849–1851.  https://doi.org/10.1016/0006-2952(80)90149-5 CrossRefGoogle Scholar
  10. El Kouni MH, Naguib FNM, Panzica RP, Otter BA, Chu SH, Gosslin G, Chu CK, Schinazi RF, Shealy YF, Goudgaon N, Ozerov AA, Ueda T, Litzsch MH (1996) Effect of modifications in the pentose moiety and conformational changes on the binding of nucleoside ligands to uridine phosphorylase from Toxoplasma gondii. Biochem Pharmacol 51:1687–1700.  https://doi.org/10.1016/0006-2952(96)00213-4 CrossRefGoogle Scholar
  11. Eliasson R, Pontis E, Reichard P, Eckstein F (1981) Replication of polyoma DNA in nuclei isolated from azidocytidine-inhibited fibroblasts. J Biol Chem 256:9044–9050Google Scholar
  12. Gai XS, Fenlon EE, Brewer SH (2010) A sensitive multispectroscopic probe for nucleic acids. J Phys Chem B 114:7958–7966.  https://doi.org/10.1021/jp101367s CrossRefGoogle Scholar
  13. Giacca M, Borella S, Calderazzo F, Ferraro P, Bianchi LC, Reichard P (1994) Inhibition of ribonucleotide reductase by 2′-substituted deoxycytidine analogues: possible application in AIDS treatment. Proc Natl Acad Sci USA 91:8403–8407CrossRefGoogle Scholar
  14. Giacca M, Borella S, Calderazzo F, Bianchi LC, D’Agaro P, Rampazzo C, Bianchi V, Reichard P (1996) Synergistic antiviral action of ribonucleotide reductase inhibitors and 3′-azido-3′-deoxythymidine on HIV type 1 infection in vitro. AIDS Res Human Retrovir 12:667–682.  https://doi.org/10.1089/aid.1996.12.677 CrossRefGoogle Scholar
  15. Hari Y, Akabane M, Hatanaka Y, Nakahara M, Obika S (2011) A 4-[(3R,4R)-dihydroxypyrrolidino]pyrimidin-2-one nucleobase for a CG base pair in triplex DNA. Chem Commun 47:4424–4426.  https://doi.org/10.1039/C1CC10138B CrossRefGoogle Scholar
  16. Iwata K, Ayusawa D, Seno T (1979) Isolation of 2′-deoxy-2′-azidocytidine-resistant mutants deficient in deoxycytidine kinase in mouse FM3A cells. Cell Struct Funct 4:317–320.  https://doi.org/10.1247/csf.4.317 CrossRefGoogle Scholar
  17. Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D (1998) Substrate/inhibitor specificities of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2). In: Griesmacher A et al (eds) Purine and pyrimidine metabolism in man IX. Plenum, New York, pp 623–627CrossRefGoogle Scholar
  18. Kierdaszuk B, Krawiec K, Kazimierczuk Z, Jacobsson U, Johansson NG, Munch-Petersen B, Eriksson S, Shugar D (1999) Substrate/inhibitor properties of human deoxycytidine kinase (dCK) and thymidine kinases (TK1 and TK2) towards the sugar moiety of nucleosides, including O′-alkyl analogues. Nucleos Nucleot Nucleic Acids 18:1883–1903.  https://doi.org/10.1080/07328319908044850 CrossRefGoogle Scholar
  19. Kirschenheuter GP, Zhai Y, Pieken WA (1994) An improved synthesis of 2′-azido-2′-deoxyuridine. Tetrahedron Lett 35:8517–8520.  https://doi.org/10.1016/S0040-4039(00)78425-5 CrossRefGoogle Scholar
  20. Kobayashi Y, Yamamoto K, Sai T, Nakano M, Kumadaki I (1980) Studies on organic fluorine compounds. Part 35. Trifluoromethylation of pyrimidine- and purine-nucleosides with trifluoromethyl-copper complex. J Chem Soc Perkin Trans 1:2755–2761.  https://doi.org/10.1039/P19800002755 CrossRefGoogle Scholar
  21. Kumaki Y, Day CW, Smee DF, Morrey JD, Barnard DL (2011) In vitro and in vivo efficacy of fluorodeoxycytidine analogs against highly pathogenic avian influenza H5N1, seasonal, and pandemic H1N1 virus infections. Antivir Res 92:329–340.  https://doi.org/10.1016/j.antiviral.2011.09.001 CrossRefGoogle Scholar
  22. Matsuda A, Yasuoka J, Sasaki T, Ueda T (1991) Nucleosides and nucleotides. 95. improved synthesis of 1-(2-azido-2-deoxy-β-d-arabinofuranosyl)cytosine (Cytarazid) and –thymine. inhibitory spectrum of Cytarazid on the growth of various human tumor cells in vitro. J Med Chem 34:999–1002.  https://doi.org/10.1021/jm00107a018 CrossRefGoogle Scholar
  23. McGuigan C, Pathirana RN, Snoeck R, Andrei G, De Clercq E, Balzarini J (2004) Discovery of a new family of inhibitors of human cytomegalovirus (HCMV) based upon lipophilic alkyl furano pyrimidine dideoxy nucleosides: action via a novel non-nucleosidic mechanism. J Med Chem 47:1847–1851.  https://doi.org/10.1021/jm030857h CrossRefGoogle Scholar
  24. Mieczkowski A, Makowska M, Sekula J, Tomczyk E, Zalewska E, Nasulewicz-Goldeman A, Wietrzyk J (2015) Bicyclic cytarabine analogues: synthesis and investigation of antitumor properties of novel, 6-aryl and 6-alkyl-3H-pyrrolo[2,3-d]pyrimidin-2(7H)-one arabinosides. Tetrahedron 71:8454–8461.  https://doi.org/10.1016/j.tet.2015.09.015 CrossRefGoogle Scholar
  25. Mieczkowski A, Bazlekova M, Bagiński M, Wójcik J, Winczura A, Miazga A, Ghahe SS, Gajda R, Woźniak K, Tudek B (2016a) A mild and efficient approach to the 6H-oxazolo[3,2-f]pyrimidine-5,7-dione scaffold via unexpected rearrangement of 2,3-dihydropyrimido[6,1-b][1,5,3]dioxazepine-7,9(5H,8H)-diones: synthesis, crystallographic studies and cytotoxic activity screening. Tetrahedron Lett 57:743–746.  https://doi.org/10.1016/j.tetlet.2016.01.006 CrossRefGoogle Scholar
  26. Mieczkowski A, Tomczyk E, Makowska M, Nasulewicz-Goldeman A, Gajda R, Woźniak K, Wietrzyk J (2016b) Synthesis and investigation of antitumor properties of novel bicyclic furopyrimidine, pyrrolopyrimidine and pyrimidopyridazine nucleoside analogues. Synthesis 48:566–572.  https://doi.org/10.1055/s-0035-1561277 CrossRefGoogle Scholar
  27. Mitsuya H, Reinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D, Barry DW, Broder S (1985) 3′-Azido-3′-deoxythymidine (BW A509U): an antiviral agent that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci USA 82:7096–7100CrossRefGoogle Scholar
  28. Pathak P (2002) Azidonucleosides: synthesis, reactions, and biological properties. Chem Rev 102:1623–1667.  https://doi.org/10.1021/cr0104532 CrossRefGoogle Scholar
  29. Pokrovskii, AG, Il’icheva TN, Belanov EF, Volkov GN, Kukhanova MK, Aleksandrova LA (2005) Russ. RU 2264409 C2, 2005.11.20Google Scholar
  30. Reichard P, Rowen L, Eiiassoh J, Hobbs J, Eckstein F (1978) Inhibition of primase, the dnaG protein of Escherichia coli by 2′-deoxy-2′-azidocytidine triphosphate. J Biol Chem 253:7011–7016Google Scholar
  31. Roy B, Verri A, Lossani A, Spadari S, Focher F, Aubertin AM, Gosselin G, Mathe C, Perigaud C (2004) Enantioselectivity of ribonucleotide reductase: a first study using stereoisomers of pyrimidine 2′-azido-2′-deoxynucleosides. Biochem Pharmacol 68:711–719.  https://doi.org/10.1016/j.bcp.2004.05.002 CrossRefGoogle Scholar
  32. Smith DB, Martin JA, Klumpp K, Baker SJ, Blomgren PA, Devos R, Granycome C, Hang J, Hobbs CJ, Jiang WR, Laxton C, Le Pogam S, Leveque V, Ma H, Maile G, Merret JH, Pichota A, Sarma K, Smith M, Swallow S, Symons J, Vesey D, Najera I, Cammack N (2007) Design, synthesis, and antiviral properties of 4′-substituted ribonucleosides as inhibitors of hepatitis C virus replication: the discovery of R1479. Bioorg Med Chem Lett 17:2570–2576.  https://doi.org/10.1016/j.bmcl.2007.02.004 CrossRefGoogle Scholar
  33. Torrence PF, Bobst AM, Waters JA, Witkop B (1973a) Synthesis and characterization of potential interferon inducers. Poly(2′-azido-2′-deoxyuridylic acid). Biochemistry 12:3962–3972.  https://doi.org/10.1021/bi00744a028 CrossRefGoogle Scholar
  34. Torrence PF, Waters JA, Buckler CE, Witkop B (1973b) Effect of pyrimidine and ribose modifications on the antiviral activity of synthetic polynucleotides. Biochem Biophys Res Commun 52:890–898.  https://doi.org/10.1016/0006-291X(73)91021-8 CrossRefGoogle Scholar
  35. Vickers MF, Zhang J, Visser F, Tackaberry T, Robins MJ, Nielsen LPC, Nowak I, Baldwin SA, Young JD, Cass CE (2004) Uridine recognition motifs of human equilibrative nucleoside transporters 1 and 2 produced in Saccharomyces cerevisiae. Nucleos Nucleot Nucleic Acids 23:361–373.  https://doi.org/10.1081/NCN-120028333 CrossRefGoogle Scholar
  36. Wanf J, Neuhard J, Eriksson S (1998) An Escherichia coli system expressing human deoxyribonucleoside salvage enzymes for evaluation of potential antiproliferative nucleoside analogs. Antimicrob Agents Chemother 42:2620–2625Google Scholar
  37. Wnuk SF, Chowdhury SM, Garcia PI Jr, Robins MJ (2002) Stereodefined synthesis of O3′-labeled uracil nucleosides, 3′-[17O]-2′-azido-2′-deoxyuridine 5′-diphosphate as a probe for the mechanism of inactivation of ribonucleotide reductase. J Org Chem 67:116–119.  https://doi.org/10.1021/jo010899i Google Scholar
  38. Zhang J, Visser F, Vickers MF, Lang T, Robins MJ, Nielsen LPC, Nowak I, Baldwin SA, Young JD, Cass CE (2003) Uridine binding motifs of human concentrative nucleoside transporters 1 and 3 produced in Sacharomycetes cerevisiae. Mol Pharmacol 64:1512–1520.  https://doi.org/10.1124/mol.64.6.1512 CrossRefGoogle Scholar
  39. Zhang J, Smith KM, Tackaberry T, Visser F, Robins MJ, Nielsen LPC, Nowak I, Karpinski E, Baldwin SA, Young JD, Cass CE (2005) Uridine binding and transportability determinants of human concentrative nucleoside transporters. Mol Pharmacol 68:830–839.  https://doi.org/10.1124/mol.105.012187 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Adam Mieczkowski
    • 1
  • Patrycja Wińska
    • 2
  • Marta Kaczmarek
    • 1
    • 2
  • Magdalena Mroczkowska
    • 1
    • 3
  • Damian Garbicz
    • 1
  • Tomasz Pilżys
    • 1
  • Michał Marcinkowski
    • 1
  • Jan Piwowarski
    • 1
  • Elżbieta Grzesiuk
    • 1
  1. 1.Institute of Biochemistry and Biophysics, Polish Academy of SciencesWarsawPoland
  2. 2.Faculty of ChemistryWarsaw University of TechnologyWarsawPoland
  3. 3.Department of ChemistryUniversity of WarsawWarsawPoland

Personalised recommendations