Skip to main content
Log in

Comparison of heterogeneous anion-exchange membranes for nitrate ion removal from mixed salt solution

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.


Nitrate concentration in surface and groundwater is becoming a global concern. The electrodialysis is a useful separation technique that uses ion-exchange membranes to treat the solution, and these membranes can possess certain selectivity towards different ions. The objective of this work was to compare the possibility of nitrate separation form a mixed salt solution by electrodialysis using three different anion-exchange membranes (AEMs). Characteristic properties of heterogeneous AEMs are mainly defined by their composition, a mixture of a polymer matrix and an anion-exchange resin. In this work, three different kinds of anion-exchange resins with distinct functional groups (trimethylamine and dimethylethanolamine) were used to prepare AEMs, in which selectivity towards nitrate ion was compared by desalination of mixed salt solution using laboratory electrodialysis unit. The solution used was composed of NaCl, NaNO3, NaH2PO4, and Na2SO4, every salt of concentration 0.05 mol L−1. Although the properties of individual AEMs and their courses of desalination differed significantly, all membranes had higher selectivity for nitrate ions than for the remaining ones; however, their selectivity towards nitrate and chloride was very similar. The affinity relationship of the AEMs was: nitrate > chloride > dihydrogen phosphate > sulfate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others


A :

Effective membrane area (m2)

c :

Concentration (mg L−1)

E :

Voltage (V)

F :

Faraday constant (C mol−1)

I :

Electric current (A)

J :

Mass flux per unit membrane area (kg h−1 m−2)

m :

Mass (kg)

N :

Number of membrane pairs in a stack

Q :

Electric charge (C)

S :

Average separation efficiency (%)

S t :

Separation efficiency in time t

t :

Time (s)

W sp :

Specific energy consumption (W h kg−1)

z :

Anion charge number

Δm :

Overall weight of transported salts (kg)

Δn :

Amount of transported salt (mol)

Δt :

Interval of sampling (min)

η :

Current efficiency (%)

Κ :

Conductivity (mS cm−1)

ν :

Stoichiometric coefficient


Anion referred as A


Anion referred as B


Dilute circuit


Overall desalination

i :

Type of individual salt

j :

Value determined in sampling time


Total dissolved salts in dilute circuit


Value determined in feed solution


  • Arahman N, Mulyati S, Lubis MR, Takagi R, Matsuyama H (2016) The removal of fluoride from water based on applied current and membrane types in electrodialyis. J Fluor Chem 191:97–102. doi:10.1016/j.jfluchem.2016.10.002

    Article  CAS  Google Scholar 

  • Bhadja V, Trivedi JS, Chatterjee U (2016) Efficacy of polyethylene interpolymer membranes for fluoride and arsenic ion removal during desalination of water via electrodialysis. RSC Adv 6:67118–67126. doi:10.1039/c6ra11450d

    Article  CAS  Google Scholar 

  • Bosko ML, Rodrigues MAS, Ferreira JZ, Miró EE, Bernardes AM (2014) Nitrate reduction of brines from water desalination plants by membrane electrolysis. J Membr Sci 451:276–284. doi:10.1016/j.memsci.2013.10.004

    Article  CAS  Google Scholar 

  • Bulejko P, Stranska E, Weinertova K (2017) Properties and structure of heterogeneous ion-exchange membranes after exposure to chemical agents. J Solid State Electrochem 21:111–124. doi:10.1007/s10008-016-3341-1

    Article  CAS  Google Scholar 

  • Burn S, Hoang M, Zarzo D, Olewniak F, Campos E, Bolto B, Barron O (2015) Desalination techniques—a review of the opportunities for desalination in agriculture. Desalination 364:2–16. doi:10.1016/j.desal.2015.01.041

    Article  CAS  Google Scholar 

  • Dammak L, Larchet C, Grande D (2009) Ageing of ion-exchange membranes in oxidant solutions. Sep Purif Technol 69:43–47. doi:10.1016/j.seppur.2009.06.016

    Article  CAS  Google Scholar 

  • Dlask O, Vaclavikova N, Dolezel M (2016) Insertion of filtration membranes into electrodialysis stack and its impact on process performance. Period Polytech Chem Eng 60:169–172. doi:10.3311/PPch.8539

    Article  Google Scholar 

  • Ebner C, Onthong U, Probst M (2005) Computational study of hydrated phosphate anions. J Mol Liq 118:15–25. doi:10.1016/j.molliq.2004.07.004

    Article  CAS  Google Scholar 

  • Elmidaoui A, Sahli MAM, Chay L, Elabbassi H, Hafsi M, Largeteau D (2001) Pollution of nitrate in Moroccan ground water: removal by electrodialysis. Desalination 136:325–332. doi:10.1016/S0011-9164(01)00195-3

    Article  CAS  Google Scholar 

  • Elmidaoui A, Elhannouni F, Taky M, Chay L, Sahli MAM, Echihabi L, Hafsi M (2002) Optimization of nitrate removal operation from ground water by electrodialysis. Sep Purif Technol 29:235–244. doi:10.1016/S1383-5866(02)00092-8

    Article  CAS  Google Scholar 

  • Hernández-García FA, Ortíz-Verdín AA, Torres-González J, Terol-Villalobos I, Morales-Hernández J, Antaño-López R, Castañeda F (2014) Hybrid process for potable water denitrification. Int J Electrochem Sci 9:2716–2726

    Google Scholar 

  • Kabay N, Yüksel M, Samatya S, Arar Ö, Yüksel Ü (2007) Removal of nitrate from ground water by a hybrid process combining electrodialysis and ion exchange processes. Sep Sci Technol 42:2615–2627. doi:10.1080/01496390701511374

    Article  CAS  Google Scholar 

  • Kariduraganavar MY, Nagrale RK, Kittur AA, Kulkarni SS (2006) Ion-exchange membranes: preparative methods for electrodialysis and fuel cell applications. Desalination 197:225–246. doi:10.1016/j.desal.2006.01.019

    Article  CAS  Google Scholar 

  • Kesore K, Janowski F, Shaposhnik VA (1997) Highly effective electrodialysis for selective elimination of nitrates from drinking water. J Membr Sci 127:17–24. doi:10.1016/S0376-7388(96)00282-7

    Article  CAS  Google Scholar 

  • Khodabakhshi AR, Madaeni SS, Hosseini SM (2011) Investigation of electrochemical and morphological properties of S-PVC based heterogeneous cation-exchange membranes modified by sodium dodecyl sulphate. Sep Purif Technol 77:220–229. doi:10.1016/j.seppur.2010.12.009

    Article  CAS  Google Scholar 

  • Kikhavani T, Ashrafizadeh SN, Van der Bruggen B (2014) Nitrate selectivity and transport properties of a novel anion exchange membrane in electrodialysis. Electrochim Acta 144:341–351. doi:10.1016/j.electacta.2014.08.012

    Article  CAS  Google Scholar 

  • Krivcik J, Vladarova J, Hadrava J, Cernin A, Brozova L (2010) The effect of an organic ion-exchange resin on properties of heterogeneous ion-exchange membranes. Desalin Water Treat 14:179–184. doi:10.5004/dwt.2010.1025

    Article  CAS  Google Scholar 

  • Machuca L, Tvrznik D, Fara V (2014) Treatment of waste water from calcium nitrate production by electrodialysis. J Int Sci Publ Agric Food 2:49–54

    Google Scholar 

  • Marcus Y (1988) Ionic radii in aqueous solutions. Chem Rev 88:1475–1498. doi:10.1021/cr00090a003

    Article  CAS  Google Scholar 

  • Matos CT, Fortunato R, Velizarov S, Reis MAM, Crespo JG (2008) Removal of mono-valent oxyanions from water in an ion exchange membrane bioreactor: influence of membrane permselectivity. Water Res 42:1785–1795. doi:10.1016/j.watres.2007.11.006

    Article  CAS  Google Scholar 

  • McGovern RK, Weiner AM, Sun L, Chambers CG, Zubair SM (2014a) On the cost of electrodialysis for the desalination of high salinity feeds. Appl Energy 136:649–661. doi:10.1016/j.apenergy.2014.09.050

    Article  Google Scholar 

  • McGovern RK, Zubair SM, Lienhard JHV (2014b) The benefits of hybridising electrodialysis with reverse osmosis. J Membr Sci 469:326–335. doi:10.1016/j.memsci.2014.06.040

    Article  CAS  Google Scholar 

  • McGovern RK, Zubair SM, Lienhard JHV (2014c) The cost effectiveness of electrodialysis for diverse salinity applications. Desalination 348:57–65. doi:10.1016/j.desal.2014.06.010

    Article  CAS  Google Scholar 

  • Nayar KG, Sundararamana P, O’Connor CL, Schacherl JD, Heath ML, Gabriel MO, Shah SR, Wright NC, Winter AGV (2017) Feasibility study of an electrodialysis system for in-home water desalination in urban India. Dev Eng 2:38–46. doi:10.1016/j.deveng.2016.12.001

    Article  Google Scholar 

  • Pirsaheb M, Khosravi T, Sharafi K, Mouradi M (2016) Comparing operational cost and performance evaluation of electrodialysis and reverse osmosis systems in nitrate removal from drinking water in Golshahr, Mashhad. Desalin Water Treat 57:5391–5397. doi:10.1080/19443994.2015.1004592

    Article  CAS  Google Scholar 

  • Samatya S, Kabay N, Yüksel Ü, Arda M, Yüksel M (2006a) Removal of nitrate from aqueous solution by nitrate selective ion exchange resins. React Funct Polym 66:1206–1214. doi:10.1016/j.reactfunctpolym.2006.03.009

    Article  CAS  Google Scholar 

  • Samatya S, Yüksel Ü, Arda M, Kabay N, Yüksel M (2006b) Investigation of selectivity and kinetic behavior of strong-base ion exchange resin Purolite A 520E for nitrate removal from aqueous solution. Sep Sci Technol 41:2973–2988. doi:10.1080/01496390600854560

    Article  CAS  Google Scholar 

  • Sata T (2000) Studies on anion exchange membranes having permselectivity for specific anions in electrodialysis—effect of hydrophilicity of anion exchange membranes on permselectivity of anions. J Membr Sci 1:1–31. doi:10.1016/S0376-7388(99)00277-X

    Article  Google Scholar 

  • Sata T (2004) Permselectivity of specific anions through anion exchange membranes in electrodialysis. In: Sata T (ed) Ion exchange membranes. Preparation, characterization, modification and application. RSC, Cambridge, pp 164–201

    Google Scholar 

  • Sata T, Yamane Y, Matsusaki K (1998) Preparation and properties of anion exchange membranes having pyridinium or pyridinium derivatives as anion exchange groups. J Polym Sci Part A-1 Polym Chem 36:49–58. doi:10.1002/(SICI)1099-0518(19980115)36:1<49:AID-POLA8>3.0.CO;2-X

    Article  CAS  Google Scholar 

  • Shkolnikov V, Bahga SS, Santiago JG (2012) Desalination and hydrogen, chlorine, and sodium hydroxide production via electrophoretic ion exchange and precipitation. Phys Chem Chem Phys 14:11534–11545. doi:10.1039/C2CP42121F

    Article  CAS  Google Scholar 

  • Song H, Zhou Y, Li A, Mueller S (2012) Selective removal of nitrate from water by a macroporous strong basic anion exchange resin. Desalination 296:53–60. doi:10.1016/j.desal.2012.04.003

    Article  CAS  Google Scholar 

  • Stranska E, Nedela D, Valek R, Krivcik J (2015) Optimization of preparation of heterogeneous cation exchange membranes using different particle size distributions of ion exchange resins. Chemi Listy 109:701–709

    CAS  Google Scholar 

  • Svoboda M, Beneš J, Vobecká L, Slouka Z (2017) Swelling induced structural changes of a heterogeneous cation-exchange membrane analyzed by micro-computed tomography. J Membr Sci 525:195–201. doi:10.1016/j.memsci.2016.10.046

    Article  CAS  Google Scholar 

  • Takagi R, Vaselbehagh M, Matsuyama H (2014) Theoretical study of the permselectivity of an anion exchange membrane in electrodialysis. J Membr Sci 470:486–493. doi:10.1016/j.memsci.2014.07.053

    Article  CAS  Google Scholar 

  • Thakur AK, Srivastava N, Chakrabarty T, Rebary B, Patidar R, Sanghavi RJ, Shahi VK, Ghosh PK (2014) An improved protocol for electrodialytic desalination yielding mineral-balanced potable water. Desalination 335:96–101. doi:10.1016/j.desal.2013.12.007

    Article  CAS  Google Scholar 

  • Van der Bruggen B, Koninckx A, Vandecasteele C (2004) Separation of monovalent and divalent ions from aqueous solution by electrodialysis and nanofiltration. Water Res 38:1347–1353. doi:10.1016/j.watres.2003.11.008

    Article  Google Scholar 

  • Weinertova K, Nedela D, Stranska E, Krivcik J (2017) Study of monovalent ion selectivity of anion-exchange membranes: effect of surface modification and applied voltage. Desalin Water Treat 75:284–292. doi:10.5004/dwt.2017.20530

    Article  Google Scholar 

  • Zhang Y, Van der Bruggen B, Pinoy L, Meesschaert B (2009) Separation of nutrient ions and organic compounds from salts in RO concentrates by standard and monovalent selective ion-exchange membranes used in electrodialysis. J Membr Sci 332:104–112. doi:10.1016/j.memsci.2009.01.030

    Article  CAS  Google Scholar 

Download references


This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic within the framework of the project “Progressive Development of the Membrane Innovation Centre” program NPU I No. LO1418, using the infrastructure of the Membrane Innovation Centre.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Kristyna Weinertova.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Weinertova, K., Honorato, R.S., Stranska, E. et al. Comparison of heterogeneous anion-exchange membranes for nitrate ion removal from mixed salt solution. Chem. Pap. 72, 469–478 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: