Skip to main content
Log in

Determination of citrate released from stabilized gold nanoparticles by capillary zone electrophoresis

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this article, we report a pilot study on release of citrate ions from citrate-stabilized gold nanoparticles by capillary zone electrophoresis. First, a method for determination of citrate released from nanoparticles was developed using 5 mM phthalate buffer pH 6.5 with polybrene capillary inner wall coating. Within these conditions, citrate migrated in 1.8 min and it can be determined with LOD of 7 µmol/L using molybdate as the internal standard. The release of citrate was initiated by addition of common MOPS buffer ions used in capillary electrophoresis to nanoparticles samples. Non-linear behavior was found that proves release of citrate from stabilized gold nanoparticles. The release is initiated when 5 mM MOPS is added to nanoparticles’ solution. This behavior can partially explain zeta potential change of the nanoparticles from –34 mV in bulk solution to –28 mV in 50 mM MOPS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Baron D, Dolanská P, Medříková Z, Zbořil R, Petr J (2017a) Online stacking of carboxylated magnetite core-shell nanoparticles in capillary electrophoresis. J Sep Sci 40:2482–2487. doi:10.1002/jssc.201601435

    Article  CAS  Google Scholar 

  • Baron D, Cacho C, Petr J (2017b) Electrokinetic preconcentration of magnetite core—carboxylic shell nanoparticles by capillary electrophoresis. J Chromatogr A 1499:217–221. doi:10.1016/j.chroma.2017.03.079

    Article  CAS  Google Scholar 

  • Butt HJ, Kappl M (2010) Surface and interfacial forces. Wiley-VCH, Weinheim

    Book  Google Scholar 

  • Cacho C, Marková Z, Ševčík J, Zbořil R, Petr J (2014) Study of behavior of carboxylic magnetite core shell nanoparticles on a pH boundary. J Chromatogr A 1364:59–63. doi:10.1016/j.chroma.2014.08.090

    Article  CAS  Google Scholar 

  • Chovancek M, Choo P, Macka M (2004) Development of a fully buffered molybdate electrolyte for capillary electrophoresis with indirect detection and its use for analysis of anions in Bayer liquor. Electrophoresis 25:437–443. doi:10.1002/elps.200305705

    Article  CAS  Google Scholar 

  • d’Orlyé F, Varenne A, Georgelin T, Siaugue JM, Teste B, Descroix S, Gareil P (2009) Charge-based characterization of nanometric cationic bifunctional maghemite/silica core/shell particles by capillary zone electrophoresis. Electrophoresis 30:2572–2582. doi:10.1002/elps.200800835

    Article  Google Scholar 

  • Dinkel R, Braunschweig B, Peukert W (2016) Fast and slow ligand exchange at the surface of colloidal gold nanoparticles. J Phys Chem C 120:1673–1682. doi:10.1021/acs.jpcc.5b11055

    Article  CAS  Google Scholar 

  • Doble P, Haddad PR (1999) Use of electrolytes containing multiple co-anions in the analysis of anions by capillary electrophoresis using indirect absorbance detection. Anal Chem 71:15–22. doi:10.1021/ac9711955. http://echmet.natur.cuni.cz/download

  • Doble P, Macka M, Anderson P, Haddad PR (1997) Buffered chromate electrolytes for separation and indirect absorbance detection of inorganic anions in capillary electrophoresis. Anal Commun 34:351–353. doi:10.1039/a706001g

    Article  CAS  Google Scholar 

  • Hu Q, Paau MC, Zhang Y, Chan W, Gong X, Zhang L, Choi MMF (2013) Capillary electrophoretic study of amine/carboxylic acid-functionalized carbon nanodots. J Chromatogr A 1304:234–240. doi:10.1016/j.chroma.2013.07.035

    Article  CAS  Google Scholar 

  • Illés E, Tombácz E (2006) The effect of humic acid adsorption on pH-dependent surface charging and aggregation of magnetite nanoparticles. J Colloid Interface Sci 295:115–123. doi:10.1016/j.jcis.2015.08.003

    Article  Google Scholar 

  • Jaroš M, Hruška V, Štědrý M, Zusková I, Gaš B (2004) Eigenmobilities in background electrolytes for capillary zone electrophoresis: IV. Computer program PeakMaster. Electrophoresis 25:3080–3085. doi:10.1002/elps.200405982

    Article  Google Scholar 

  • Liu FK (2007) A high-efficiency capillary electrophoresis-based method for characterizing the sizes of Au nanoparticles. J Chromatogr A 1167:231–235. doi:10.1016/j.chroma.2007.08.058

    Article  CAS  Google Scholar 

  • Liu FK (2011) Extremely highly efficient on-line concentration and separation of gold nanoparticles using the reversed electrode polarity stacking mode and surfactant-modified capillary electrophoresis. Anal Chim Acta 694:167–173. doi:10.1016/j.aca.2011.03.056

    Article  CAS  Google Scholar 

  • Liu FK, Ko FH, Huang PW, Wu CH, Chu TC (2005) Studying the size/shape separation and optical properties of silver nanoparticles by capillary electrophoresis. J Chromatogr A 1062:139–145. doi:10.1016/j.chroma.2004.11.010

    Article  CAS  Google Scholar 

  • Michalcová L, Glatz Z (2016) New directions in the study of biomolecular interactions by capillary electrophoresis. Chem Listy 110:249–257

    Google Scholar 

  • Naidu R, Chen ZL (2001) Application of co-electroosmotic capillary electrophoresis for the determination of inorganic anions and carboxylic acids in soil and plant extract with direct UV detection. Chromatographia 54:495–500. doi:10.1007/BF02491206

    Article  CAS  Google Scholar 

  • Neaga IO, Bodoki E, Hambye S, Blankert B, Oprean R (2016) Study of nucleic acid-ligand interactions by capillary electrophoretic techniques: a review. Talanta 148:247–256. doi:10.1016/j.talanta.2015.10.077

    Article  CAS  Google Scholar 

  • Negro A, Paz E, Rabanal B (2003) New electrolyte composition for determination of anions by capillary electrophoresis with indirect UV detection. J Liq Chromatogr 26:709–722. doi:10.1081/JLC-120018416

    Article  CAS  Google Scholar 

  • Park JW, Shumaker-Parry JS (2015) Strong resistance of citrate anions on metal nanoparticles to desorption under thiol functionalization. ACS Nano 9:1665–1682. doi:10.1021/nn506379m

    Article  CAS  Google Scholar 

  • Petr J, Teste B, Descroix S, Siaugue JM, Gareil P, Varenne A (2010) Separation of α-lactalbumin grafted- and non-grafted maghemite core/silica shell nanoparticles by capillary zone electrophoresis. Electrophoresis 31:2754–2761. doi:10.1002/elps.201000083

    Article  CAS  Google Scholar 

  • Pyell U, Jalil AH, Pfeiffer C, Pelaz B, Parak WJ (2015a) Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part II: determination of the hydrodynamic radius distribution—comparison with asymmetric flow field-flow fractionation. J Colloid Interface Sci 450:288–300. doi:10.1016/j.jcis.2015.06.042

    Article  CAS  Google Scholar 

  • Pyell U, Jalil AH, Urban DA, Pfeiffer C, Pelaz B, Parak WJ (2015b) Characterization of hydrophilic coated gold nanoparticles via capillary electrophoresis and Taylor dispersion analysis. Part I: determination of the zeta potential employing a modified analytic approximation. J Colloid Interface Sci 457:131–140. doi:10.1016/j.jcis.2015.03.006

    Article  CAS  Google Scholar 

  • Raber G, Greschonig H (2000) New preconditioning strategy for the determination of inorganic anions with capillary zone electrophoresis using indirect UV detection. J Chromatogr A 890:355–361. doi:10.1016/S0021-9673(00)00615-4

    Article  CAS  Google Scholar 

  • Radko SP, Chrambach A (2002) Separation and characterization of sub-µ- and µ-sized particles by capillary zone electrophoresis. Electrophoresis 23:1957–1972. doi:10.1002/1522-2683(200207)23:13<1957:AID-ELPS1957>3.0.CO;2-I

    Article  CAS  Google Scholar 

  • Shamsi SA, Danielson ND (1994) Naphthalenesulfonates as electrolytes for capillary electrophoresis of inorganic anions, organic-acids, and surfactants with indirect photometric detection. Anal Chem 66:3757–3764. doi:10.1021/ac00093a035

    Article  CAS  Google Scholar 

  • Trapiella-Alfonso L, d’Orlye F, Varenne A (2016a) Recent advances in the development of capillary electrophoresis methodologies for optimizing, controlling, and characterizing the synthesis, functionalization, and physicochemical, properties of nanoparticles. Anal Bioanal Chem 408:2669–2675. doi:10.1007/s00216-015-9236-7

    Article  CAS  Google Scholar 

  • Trapiella-Alfonso L, Ramirez-Garcia G, d’Orlye F, Varenne A (2016b) Electromigration separation methodologies for the characterization of nanoparticles and the evaluation of their behaviour in biological systems. Trends Anal Chem 84:121–130. doi:10.1016/j.trac.2016.04.022

    Article  CAS  Google Scholar 

  • Vicente G, Colón LA (2008) Separation of bioconjugated quantum dots using capillary electrophoresis. Anal Chem 80:1988–1994. doi:10.1021/ac702062u

    Article  CAS  Google Scholar 

  • Voracova I, Kleparnik K, Liskova M, Foret F (2015) Determination of zeta-potential, charge, and number of organic ligands on the surface of water soluble quantum dots by capillary electrophoresis. Electrophoresis 36:867–874. doi:10.1002/elps.201400459

    Article  CAS  Google Scholar 

  • Wang M, Qu F, Shan XQ, Lin J (2003) Development and optimization of a method for the analysis of low-molecular-mass organic acids in plants by capillary electrophoresis with indirect detection. J Chromatogr A 989:285–292. doi:10.1016/S0021-9673(03)00026-8

    Article  CAS  Google Scholar 

  • Yang Y, Liu F, Kang J, Ou Q (1999) Improved selectivity of anions with methanol as additive: determination of Cl-, NO3- and SO42- in river water by capillary electrophoresis. J Chromatogr A 834:393–399. doi:10.1016/S0021-9673(98)00859-0

    Article  CAS  Google Scholar 

  • Yokoyama T, Macka M, Haddad PR (2001) Determination of association constants of inorganic ions with C12- and C14-alkyldimethylammoniopropane sulfonate zwitterionic surfactants using capillary electrochromatography. Anal Chim Acta 442:221–230. doi:10.1016/S0003-2670(01)01177-1

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The financial support of the research by the Ministry of Education, Youth, and Sports of the Czech Republic (project NPU LO 1305) and the Czech Science Foundation (project 16-23938Y) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jan Petr.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Horská, J., Ševčík, J. & Petr, J. Determination of citrate released from stabilized gold nanoparticles by capillary zone electrophoresis. Chem. Pap. 72, 419–424 (2018). https://doi.org/10.1007/s11696-017-0291-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0291-8

Keywords

Navigation