Skip to main content
Log in

A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis, characterization, and catalytic performance

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript

Abstract

In this work, effective and novel heterogeneous catalysts of Metal–organic framework MIL-101(Fe) doped with cobalt (Co2+) or copper (Cu2+) have been synthesized by post-synthesis method, namely Co–MIL-101(Fe) and Cu–MIL-101(Fe). The initial and metal-doped samples were tested to activate persulfate (PS) for removal of Acid Orange 7 (AO7) in water. The surface of samples were characterized using X-ray diffraction, Fourier transform infrared spectroscopy, Raman spectroscopy, N2 adsorption, scanning electron microscopy and transmission electron microscopy. The addition of Cu2+ and Co2+ could alter structure characteristics of MIL-101(Fe) in crystal structure and morphology. The unusual octahedron morphology of MIL-101(Fe) turned to be irregular, disorder and a rod-like morphology was shaped. What is more, Co doping caused greater changes in structure characteristics in comparison with Cu doping. The alteration was reflected in the catalytic capacity of PS activation. An interesting note was that, whether Co or Cu doping, metal-doped MIL-101(Fe) greatly improved the PS activation as compared to unmodified MIL-101(Fe). The removal rate of AO7 was about 66, 92, 98% in MIL-101(Fe)/PS, 6%wtCu–MIL-101(Fe)/PS and 6%wtCo–MIL-101(Fe)/PS system, respectively. Some results also suggested the performance of Co–MIL-101(Fe) was superior to that of Cu–MIL-101(Fe). Additionally, a series of parameters were designed to achieve maximum capacity of PS activation. Such an enhancement in activity may be attributed to the main reasons: the new active sites created by metal additives; an increase in number of active Fe sites produced by Co and Cu doping which results in alteration of morphology and structure of catalysts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Ahmad M, Teel AL, Furman OS, Reed JI, Watts RJ (2012) Oxidative and reductive pathways in iron-ethylenediaminetetraacetic acid-activated persulfate systems. J. Environ Eng-Asce 138:411–418. doi:10.1061/(ASCE)EE.1943-7870.0000496

    Article  CAS  Google Scholar 

  • Ai LH, Zhang CH, Li LL, Jiang J (2014) Iron terephthalate metal-organic framework: revealing the effective activation of hydrogen peroxide for the degradation of organic dye under visible light irradiation. Appl Catal B Environ 148:191–200. doi:10.1016/j.apcatb.2013.10.056

    Article  Google Scholar 

  • Alaerts L, Séguin E, Poelman H, Thibault-Starzyk F, Jacobs PA, De Vos D (2006) Probing the Lewis acidity and catalytic activity of the metal-organic framework [Cu-3(btc)(2)] (BTC = benzene-1,3,5-tricarboxylate). Chem Eur J 12:7353–7363. doi:10.1002/chem.200600220

    Article  CAS  Google Scholar 

  • Binh NT, Tien DM, Giang LTK, Khuyen HT, Huong NT, Huong TT, Lam TD (2014) Study on preparation and characterization of MOF based lanthanide doped luminescent coordination polymers. Mater Chem Phys 143:946–951. doi:10.1016/j.matchemphys.2013.09.048

    Article  Google Scholar 

  • Buxton GV, Bydder M, Salmon GA (1999) The reactivity of chlorine atoms in aqueous solution - Part II. The equilibrium SO ·−4  + Cl-reversible arrow Cl−· + SO 2-4 . Phys Chem Chem Phys 1:269–273. doi:10.1039/A807808D

    Article  CAS  Google Scholar 

  • Ebrahim AM, Bandosz TJ (2013) Ce(III) doped Zr-based MOFs as excellent NO2 adsorbents at ambient conditions. ACS Appl Mater Int 5:10565–10573. doi:10.1021/am402305u

    Article  CAS  Google Scholar 

  • Fang DD, Gao J, Dionysiou DD, Liu C, Zhou DM (2013) Activation of persulfate by quinones: free radical reactions and implication for the degradation of PCBs. Environ Sci Technol 47:4605–4611. doi:10.1021/es400262n

    Article  CAS  Google Scholar 

  • Fei HH, Shin JW, Meng YS, Adelhardt M, Sutter J, Meyer K, Cohen SM (2014) Reusable oxidation catalysis using metal-monocatecholato species in a robust metal-organic framework. J Am Chem Soc 136:4965–4973. doi:10.1021/ja411627z

    Article  CAS  Google Scholar 

  • Gayathri P, PraveenaJuliyaDorathi R, Palanivelu K (2009) Sonochemical degradation of textile dyes in aqueous solution using sulphate radicals activated by immobilized cobalt ions. UltrasonSonochem. 17:566–571. doi:10.1016/j.ultsonch.2009.11.019

    Google Scholar 

  • Hayon E, Treinin A, Wilf J, Am J (1972) Chem Soc doi:10.1021/ja00756a009

  • Hori H, Yamamoto A,  Koike K ,Kutsuna S , Osaka I, Arakawa R (2007) Photochemical decomposition of environmentally persistent short-chain perfluorocarboxylic acids in water mediated by iron(II)/(III) redox reactions.Chemosphere 68:572-578. doi:10.1016/j.chemosphere.2006.12.038

    Article  Google Scholar 

  • Hwang YK, Hong DY, Chang JS, Jhung SH, Sea YK, Kim J, Vimont A, Daturi M, Serre C, Férey G (2008) Amine grafting on coordinatively unsaturated metal centers of MOFs: consequences for catalysis and metal encapsulation. Angew Chem Int Ed 47:4144–4148. doi:10.1002/anie.200705998

    Article  CAS  Google Scholar 

  • Klavarioti M, Mantzavinos D, Kassinos D (2009) Removal of residual pharmaceuticals from aqueous systems by advanced oxidation processes. Environ Int 35:402–417. doi:10.1016/j.envint.2008.07.009

    Article  CAS  Google Scholar 

  • Kurniawan TA, Lo W, Chan GSY (2006) Radicals-catalyzed oxidation reactions for degradation of recalcitrant compounds from landfill leachate. Chem Eng J 125:35–57. doi:10.1016/j.cej.2006.07.006

    Article  CAS  Google Scholar 

  • Lei Q, Li ZW, Xu ZH, Guo XW, Zhang GL (2015) Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation. Appl Catal B Environ 179:500–508. doi:10.1016/j.apcatb.2015.06.001

    Article  Google Scholar 

  • Li JR, Kuppler RJ, Zhou HC (2009) Selective gas adsorption and separation in metal-organic frameworks. Chem Soc Rev 38:1477–1504. doi:10.1039/b802426j

    Article  CAS  Google Scholar 

  • Li Y, Li H, Zhang J, Guan GX, Lan YQ (2014) Efficient degradation of congo red by sodium persulfate activated with zero-valent zinc. Water Air Soil Pollut. doi:10.1007/s11270-014-2121-8

    Google Scholar 

  • Li XH, Guo WL, Liu ZH, Wang RQ, Liu H (2016) Fe-based MOFs for efficient adsorption and degradation of acid orange 7 in aqueous solution via persulfate activation. Appl Surf Sci 369:130–136. doi:10.1016/j.apsusc.2016.02.037

    Article  CAS  Google Scholar 

  • Liang CJ, Liang CP, Chen CC (2009) pH dependence of persulfate activation by EDTA/Fe(III) for degradation of trichloroethylene. J Contam Hydrol 106:173–182. doi:10.1016/j.jconhyd.2009.02.008

    Article  CAS  Google Scholar 

  • Liang HY, Zhang YQ, Huang SB, Hussain I (2013) Oxidative degradation of p-chloroaniline by copper oxidate activated per sulfate. Chem Eng J 218:384–391. doi:10.1016/j.cej.2012.11.093

    Article  CAS  Google Scholar 

  • Liang RW, Jing FF, Shen LJ, Qin N, Wu L (2015) MIL-53(Fe) as a highly efficient bifunctional photocatalyst for the simultaneous reduction of Cr(VI) and oxidation of dyes. J Hazard Mater 287:364–372. doi:10.1016/j.jhazmat.2015.01.048

    Article  CAS  Google Scholar 

  • Lin YT, Liang CJ, Chen JH (2011) Feasibility study of ultraviolet activated persulfate oxidation of phenol. Chemosphere 82:1168–1172. doi:10.1016/j.chemosphere.2010.12.027

    Article  CAS  Google Scholar 

  • Lin KYA, Chang HA, Hsu CJ (2015) Iron-based metal organic framework, MIL-88A, as a heterogeneous persulfate catalyst for decolorization of Rhodamine B in water. RSC Adv 5:32520–32530. doi:10.1039/C5RA01447F

    Article  Google Scholar 

  • Lin XM, Ma YW, Wan JQ, Wang Y (2017) LiCoPO4 (LCP) as an effective peroxymonosulfate activator for degradation of diethyl phthalate in aqueous solution without controlling pH: efficiency, stability and mechanism. Chem Eng J 315:304–314. doi:10.1016/j.cej.2017.01.036

    Article  CAS  Google Scholar 

  • Liu HZ, Bruton TA, Doyle FM, Sedlak DL (2014) In situ chemical oxidation of contaminated groundwater by persulfate: decomposition by Fe(III)- and Mn(IV)-containing oxides and aquifer materials. Environ Sci Technol 48:10330–10336. doi:10.1021/es502056d

    Article  CAS  Google Scholar 

  • Llabrés I, Xamena FX, Corma A, Garcia H (2007) Applications for metal-organic frameworks (MOFs) as quantum dot semiconductors. J Phys Chem C 111:80–85. doi:10.1021/jp063600e

    Article  Google Scholar 

  • Lu YS, Yang XX, Xu L, Wang Z, Xu YE, Desalin Qian GR (2016) Sulfate radicals from Fe3+/persulfate system for Rhodamine B degradation. Water Treat 57:29411–29420. doi:10.1080/19443994.2016.1148641

    Article  CAS  Google Scholar 

  • Lv HL, Zhao HY, Cao TC, Qian L, Wang YB, Zhao GH (2015) Efficient degradation of high concentration azo-dye wastewater by heterogeneous Fenton process with iron-based metal-organic framework. J Mol Catal A Chem 400:81–89. doi:10.1016/j.molcata.2015.02.007

    Article  CAS  Google Scholar 

  • Montazerolghaem M, Aghamiri SF, Tangestaninejad S, Talaie MR (2016) A metal-organic framework MIL-101 doped with metal nanoparticles (Ni and Cu) and its effect on CO2 adsorption properties. RSC Adv 6:632–640. doi:10.1039/C5RA22450K

    Article  CAS  Google Scholar 

  • Nguyen MTH, Nguyen QT (2014) Efficient refinement of a metal-organic framework MIL-53(Fe) by UV–vis irradiation in aqueous hydrogen peroxide solution. J Photochem Photobiol A 288:55–59. doi:10.1016/j.jphotochem.2014.05.006

    Article  CAS  Google Scholar 

  • Nie MH, Yang Y, Zhang ZJ, Yan CX, Wang XN, Li HJ, Dong WB (2014) Degradation of chloramphenicol by thermally activated persulfate in aqueous solution. Chem Eng J 246:373–382. doi:10.1016/j.cej.2014.02.047

    Article  CAS  Google Scholar 

  • Oh SY, Kim HW, Park JM, Park HS, Yoon C (2009) Oxidation of polyvinyl alcohol by persulfate activated with heat, Fe2+, and zero-valent iron. J Hazard Mater 168:346–351. doi:10.1016/j.jhazmat.2009.02.065

    Article  CAS  Google Scholar 

  • Oh SY, Kang SG, Chiu PC (2010) Degradation of 2,4-dinitrotoluene by persulfate activated with zero-valent iron. Sci Total Environ 408:3464–3468. doi:10.1016/j.scitotenv.2010.04.032

    Article  CAS  Google Scholar 

  • Pu MJ, Ma YW, Wan JQ, Wang Y, Huang MZ, Chen YM (2015) Fe/S doped granular activated carbon as a highly active heterogeneous persulfate catalyst toward the degradation of Orange G and diethyl phthalate. J. Colloid Interf. Sci. 418:330–337. doi:10.1016/j.jcis.2013.12.034

    Article  Google Scholar 

  • Qin L, Li ZW, Xu ZH, Guo XW, Zhang GL (2015) Organic-acid-directed assembly of iron-carbon oxides nanoparticles on coordinatively unsaturated metal sites of MIL-101 for green photochemical oxidation. Appl Catal B Environ 179:500–508. doi:10.1016/j.apcatb.2015.06.001

    Article  CAS  Google Scholar 

  • Rocca JD, Liu DM, Lin WB (2011) Nanoscale metal-organic frameworks for biomedical imaging and drug delivery. Acc Chem Res 44:957–968. doi:10.1021/ar200028a

    Article  Google Scholar 

  • Salari D, Niaei A, Aber S, Rasoulifard MH (2009) The photooxidative destruction of Cl Basic Yellow 2 using UV/S2O82- process in a rectangular continuous photoreactor. J Hazard Mater 166:61–66. doi:10.1016/j.jhazmat.2008.11.039

    Article  CAS  Google Scholar 

  • Shen LJ, Liang SJ, Wu WM, Liang RW, Wu L (2013) Multifunctional NH2-mediated zirconium metal-organic framework as an efficient visible-light-driven photocatalyst for selective oxidation of alcohols and reduction of aqueous Cr(VI). Dalton Trans 42:13649–13657. doi:10.1039/C3DT51479J

    Article  CAS  Google Scholar 

  • Skobelev IY, Sorokin AB, Kovalenko KA, Fendin VP, Kholdeeva OA (2013) Solvent-free allylic oxidation of alkenes with O-2 mediated by Fe-and Cr-MIL-101. J Catal 298:61–69. doi:10.1016/j.jcat.2012.11.003

    Article  CAS  Google Scholar 

  • Sun C, Zhou R, Jianan E, Sun JQ, Ren HJ (2015) Magnetic CuO@Fe3O4 nanocomposite as a highly active heterogeneous catalyst of persulfate for 2,4-dichlorophenol degradation in aqueous solution. RSC Adv 5:57058–57066. doi:10.1039/C5RA09821A

    Article  CAS  Google Scholar 

  • Tang J, Yang M, Wang J, Dong JJ, Wang G (2015) Heterogeneous Fe-MIL-101 catalysts for efficient one-pot four-component coupling synthesis of highly substituted pyrroles. New J Chem 39:4919–4923. doi:10.1039/C5NJ00632E

    Article  CAS  Google Scholar 

  • Taylor-Pashow KML, Rocca JD, Xie ZG, Tran S, Lin WB (2009) Postsynthetic modifications of iron-carboxylate nanoscale metal-organic frameworks for imaging and drug delivery. J Am Chem Soc 131:14261–14263. doi:10.1021/ja906198y

    Article  CAS  Google Scholar 

  • Vallejo M, Román MFS, Irabien A (2015) Overview of the PCDD/Fs degradation potential and formation risk in the application of advanced oxidation processes (AOPs) to wastewater treatment. Chemosphere 118:44–56. doi:10.1016/j.chemosphere.2014.05.077

    Article  CAS  Google Scholar 

  • Waldemer RH, Tratnyek PG, Johnson RL, Nurmi JT (2007) Oxidation of chlorinated ethenes by heat-activated persulfate: kinetics and products. Environ Sci Technol 41:1010–1015. doi:10.1021/es062237m

    Article  CAS  Google Scholar 

  • Wen MC, Kuwahara Y, Mori K, Zhang DQ, Li HX, Yamashita H (2015) Synthesis of Ce ions doped metal-organic framework for promoting catalytic H-2 production from ammonia borane under visible light irradiation. J Mater Chem A. 3:14134–14141. doi:10.1039/C5TA02320C

    Article  CAS  Google Scholar 

  • Wu F, Qiu LG, Ke F, Jiang X (2013) Copper nanoparticles embedded in metal-organic framework MIL-101(Cr) as a high performance catalyst for reduction of aromatic nitro compounds. Inorg Chem Commun 32:5–8. doi:10.1016/j.inoche.2013.03.003

    Article  Google Scholar 

  • Zhang CH, Ai LH, Jiang J (2015) Solvothermal synthesis of MIL-53(Fe) hybrid magnetic composites for photoelectrochemical water oxidation and organic pollutant photodegradation under visible light. J Mater Chem 3:3074–3081. doi:10.1039/C4TA04622F

    Article  CAS  Google Scholar 

  • Zhao HY, Qian L, Lv HL, Wang YB, Zhao GH (2015) Introduction of a Fe3O4 core enhances the photocatalytic activity of MIL-100(Fe) with tunable shell thickness in the presence of H2O2. Chemicalchem. 7:4148–4155. doi:10.1002/cctc.201500801

    CAS  Google Scholar 

  • Zhou HC, Long JR, Yaghi OM (2012) Introduction to metal-organic frameworks. Chem Rev 112:673–674. doi:10.1021/cr300014x

    Article  CAS  Google Scholar 

  • Zhou ZY, Mei L, Ma C, Xu F, Xiao J, Xia QB, Li Z (2016) A novel bimetallic MIL-101(Cr, Mg) with high CO2 adsorption capacity and CO2/N-2 selectivity. Chem Eng Sci 147:109–117. doi:10.1016/j.ces.2016.03.035

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research has been supported by National Natural Science Foundation of China (No. 31570568), High-level Personnel Foundation of Guangdong Higher Education Institutions (2013), State key laboratory of Pulp and Paper Engineering in China (No. 201535). The authors are grateful to all the anonymous reviewers for their insightful comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ze-yu Guan.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Duan, MJ., Guan, Zy., Ma, YW. et al. A novel catalyst of MIL-101(Fe) doped with Co and Cu as persulfate activator: synthesis, characterization, and catalytic performance. Chem. Pap. 72, 235–250 (2018). https://doi.org/10.1007/s11696-017-0276-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11696-017-0276-7

Keywords

Navigation