A practical heteropolyacid nanocatalyst supported on nano-sized ceramic for the chemoselective oxidation of sulfides to sulfoxides through an experimental design approach

Abstract

In the present work, nano-ceramic tile wastes were used as accessible, nontoxic and inexpensive support materials for the immobilization of phosphomolybdic acid (H3PMo12O40) in 1–20 wt% by an impregnation method. The novel and active heterogeneous solid acid nanocatalyst, so-called nano-ceramic tile waste, supported phosphomolybdic acid (n-CTW/PMA) well characterized by the aid of FT-IR, XRD, FE-SEM, EDX and TGA analyses. The catalytic activity of the as-prepared catalyst was probed in the chemoselective oxidation of sulfides to sulfoxides using 30% H2O2 as green oxidant at room temperature under solvent-free conditions. Optimization of the reaction conditions was accomplished by the aid of central composite design (CCD) as one of the most applicable response surface methodologies. The results showed that the catalyst with 11 wt% PMA loading led to high conversion rates and yields (97%). Besides, the noticeable advantages of this new catalyst were as follows: highly active and selective, low-toxic and -cost, available and stable, recoverable and reusable for several times.

Graphical abstract

This is a preview of subscription content, log in to check access.

Scheme 1
Fig. 1
Fig. 2
Scheme 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Scheme 3
Fig. 8

References

  1. Anastas PT, Kirchhoff MM (2002) Origins, current status, and future challenges of green chemistry. Acc Chem Res 35:686–694. doi:10.1021/ar010065m

    CAS  Article  Google Scholar 

  2. Atia H, Armbruster U, Martin A (2008) Dehydration of glycerol in gas phase using heteropolyacid catalysts as active compounds. J Catal 258:71–82. doi:10.1016/j.jcat.2008.05.027

    CAS  Article  Google Scholar 

  3. Azar ARJ, Safaei E, Mohebbi S (2015) A novel Schiff base of Mn(III) complex supported on magnetic cobalt nanoparticles as a highly efficient retrievable heterogeneous catalyst in oxidation of alcohols and sulfides compounds. Mater Res Bull 70:753–776. doi:10.1016/j.materresbull.2015.05.016

    Article  Google Scholar 

  4. Barbaro P, Liguori F (2008) Ion exchange resins: catalyst recovery and recycle. Chem Rev 109:515–529. doi:10.1021/cr800404j

    Article  Google Scholar 

  5. Benaglia M, Puglisi A, Cozzi F (2003) Polymer-supported organic catalysts. Chem Rev 103:3401–3430. doi:10.1021/cr010440o

    CAS  Article  Google Scholar 

  6. Bhat AH, Khalil HPSA, Mishra RK, Datt M, Banthia AK (2011) Development and material properties of chitosan and phosphomolybdic acid-based composites. J Compos Mater 45:39–49. doi:10.1177/0021998310371552

    CAS  Article  Google Scholar 

  7. Block E (1978) Reactions of organosulfur compounds: organic chemistry: a series of monographs. Academic Press, Cambridge

    Google Scholar 

  8. Cao J, He N, Li C, Dong J, Xu Q (1998) Fe-containing mesoporous molecular sieves as benzylation catalysts. Stud Surf Sci Catal 117:461–467. doi:10.1016/s0167-2991(98)81025-2

    CAS  Article  Google Scholar 

  9. Carrasco CJ, Montilla F, Bobadilla L, Ivanova S, Odriozola JA, Galindo A (2015) Oxodiperoxomolybdenum complex immobilized onto ionic liquid modified SBA-15 as an effective catalysis for sulfide oxidation to sulfoxides using hydrogen peroxide. Catal Today 255:102–108. doi:10.1016/j.cattod.2014.10.053

    CAS  Article  Google Scholar 

  10. Clark JH, Cullen SR, Barlow SJ, Bastock TW (1994) Keynote article. Environmentally friendly chemistry using supported reagent catalysts: structure–property relationships for clayzic. J Chem Soc, Perkin Trans 2:1117–1130. doi:10.1039/P29940001117

    Article  Google Scholar 

  11. Cundy CS, Cox PA (2003) The hydrothermal synthesis of zeolites: history and development from the earliest days to the present time. Chem Rev 103:663–702. doi:10.1021/cr020060i

    CAS  Article  Google Scholar 

  12. Das B, Chowdhury N (2007) Amberlyst-15: an efficient reusable heterogeneous catalyst for aza-Michael reactions under solvent-free conditions. J Mol Catal A: Chem 263:212–215. doi:10.1016/j.molcata.2006.08.082

    CAS  Article  Google Scholar 

  13. Dasgupta S, Torok B (2008) Environmentally benign contemporary Friedel-Crafts chemistry by solid acids. Curr Org Synth 5:321–342. doi:10.2174/157017908786241572

    CAS  Article  Google Scholar 

  14. Davis ME, Lobo RF (1992) Zeolite and molecular sieve synthesis. Chem Mater 4:756–768

    CAS  Article  Google Scholar 

  15. El-Wahab MMMA, Said AA (2005) Phosphomolybdic acid supported on silica gel and promoted with alkali metal ions as catalysts for the esterification of acetic acid by ethanol. J Mol Catal A: Chem 240:109–118. doi:10.1016/j.molcata.2005.06.038

    Google Scholar 

  16. Figueras F, Kantam ML, Choudary BM (2006) Solid base catalysts in organic synthesis. Curr Org Chem 10:1627–1637. doi:10.2174/138527206778249658

    CAS  Article  Google Scholar 

  17. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, Murrieta F, Navarrete J, Jiménez-Cruz F (2006) Ultra-deep oxidative desulfurization of diesel fuel with H2O2 catalyzed under mild conditions by polymolybdates supported on Al2O3. Appl Catal A 305:15–20. doi:10.1016/j.apcata.2006.01.027

    Article  Google Scholar 

  18. García-Gutiérrez JL, Fuentes GA, Hernández-Terán ME, Garcia P, Murrieta-Guevara F, Jiménez-Cruz F (2008) Ultra-deep oxidative desulfurization of diesel fuel by the Mo/Al2O3–H2O2 system: the effect of system parameters on catalytic activity. Appl Catal A 334:366–373. doi:10.1016/j.apcata.2007.10.024

    Article  Google Scholar 

  19. Ghanbari-Siahkali A, Philippou A, Dwyer J, Anderson MW (2000) The acidity and catalytic activity of heteropoly acid on MCM-41 investigated by MAS NMR, FTIR and catalytic tests. Appl Catal A 192:57–69. doi:10.1016/S0926-860X(99)00333-6

    CAS  Article  Google Scholar 

  20. Ghorbani-Choghamarani A, Ghasemi B, Safari Z, Azadi G (2015) Schiff base complex coated Fe 3 O 4 nanoparticles: a highly reusable nanocatalyst for the selective oxidation of sulfides and oxidative coupling of thiols. Catal Commun 60:70–75. doi:10.1016/j.catcom.2014.11.007

    CAS  Article  Google Scholar 

  21. Goesmann H, Feldmann C (2010) Nanoparticulate functional materials. Angew Chem Int Ed 49:1362–1395. doi:10.1002/anie.200903053

    CAS  Article  Google Scholar 

  22. Gruttadauria M, Giacalone F, Noto R (2008) Supported proline and proline-derivatives as recyclable organocatalysts. Chem Soc Rev 37:1666–1688. doi:10.1039/B800704G

    CAS  Article  Google Scholar 

  23. Hara M, Yoshida T, Takagaki A, Takata T, Kondo JN, Hayashi S, Domen K (2004) A carbon material as a strong protonic acid. Angew Chem Int Ed 43:2955–2958. doi:10.1002/anie.200453947

    CAS  Article  Google Scholar 

  24. He NY, Woo CS, Kim HG, Lee HI (2005) Catalytic formation of acetic anhydride over tungstophosphoric acid modified SBA-15 mesoporous materials. Appl Catal A 281:167–178. doi:10.1016/j.apcata.2004.11.026

    CAS  Article  Google Scholar 

  25. Hosseini MM, Kolvari E, Koukabi N, Ziyaei M, Zolfigol MA (2016) Zirconia sulfuric acid: an efficient heterogeneous catalyst for the one-pot synthesis of 3, 4-dihydropyrimidinones under solvent-free conditions. Catal Lett 146:1040–1049. doi:10.1007/s10562-016-1723-8

    CAS  Article  Google Scholar 

  26. Izumi Y, Urabe K, Onaka M (1992) Zeolite, clay, and heteropoly acid in organic reactions ed^eds: VCH

  27. Kalbasi RJ, Ghiaci M, Massah AR (2009) Highly selective vapor phase nitration of toluene to 4-nitro toluene using modified and unmodified H 3PO 4/ZSM-5. Appl Catal A 353:1–8. doi:10.1016/j.apcata.2008.10.013

    CAS  Article  Google Scholar 

  28. Keggin JF (1933) Structure of the molecule of 12-phosphotungstic acid. Nature 131:908–909. doi:10.1038/131908b0

    CAS  Article  Google Scholar 

  29. Kiss AA, Dimian AC, Rothenberg G (2006) Solid acid catalysts for biodiesel production—towards sustainable energy. Adv Synth Catal 348:75–81. doi:10.1002/adsc.200505160

    CAS  Article  Google Scholar 

  30. Kolvari E, Zolfagharinia S (2016) A waste to wealth approach through utilization of nano-ceramic tile waste as an accessible and inexpensive solid support to produce a heterogeneous solid acid nanocatalyst: to kill three birds with one stone. RSC Adv 6:93963–93974. doi:10.1039/C6RA11923A

    CAS  Article  Google Scholar 

  31. Kolvari E, Koukabi N, Armandpour O (2014) A simple and efficient synthesis of 3,4-dihydropyrimidin-2-(1H)-ones via Biginelli reaction catalyzed by nanomagnetic-supported sulfonic acid. Tetrahedron 70:1383–1386. doi:10.1016/j.tet.2013.10.085

    CAS  Article  Google Scholar 

  32. Kolvari E, Koukabi N, Hosseini MM (2015a) Perlite: a cheap natural support for immobilization of sulfonic acid as a heterogeneous solid acid catalyst for the heterocyclic multicomponent reaction. J Mol Catal A: Chem 397:68–75. doi:10.1016/j.molcata.2014.10.026

    CAS  Article  Google Scholar 

  33. Kolvari E, Koukabi N, Hosseini MM, Khandani Z (2015b) Perlite: an inexpensive natural support for heterogenization of HBF4. RSC Adv 5:36828–36836. doi:10.1039/C5RA03229F

    CAS  Article  Google Scholar 

  34. Kolvari E, Koukabi N, Hosseini MM, Vahidian M, Ghobadi E (2016a) Nano-ZrO2 sulfuric acid: a heterogeneous solid acid nano catalyst for Biginelli reaction under solvent free conditions. RSC Adv 6:7419–7425. doi:10.1039/C5RA19350H

    CAS  Article  Google Scholar 

  35. Kolvari E, Zolfagharinia S, Koukabi N (2016b) A unique opportunity for the utilization of glass wastes as a resource for catalytic applications: toward a cleaner environment. RSC Adv 6:113844–113858. doi:10.1039/C6RA22791K

    Article  Google Scholar 

  36. Kon Y, Yokoi T, Yoshioka M, Tanaka S, Uesaka Y, Mochizuki T, Sato K, Tatsumi T (2014) Selective hydrogen peroxide oxidation of sulfides to sulfoxides or sulfones with MWW-type titanosilicate zeolite catalyst under organic solvent-free conditions. Tetrahedron 70:7584–7592. doi:10.1016/j.tet.2014.07.091

    CAS  Article  Google Scholar 

  37. Koukabi N, Kolvari E, Khazaei A, Zolfigol MA, Shaghasemi BS, Khavasi HR (2011) Hantzsch reaction on free nano-Fe2O3 catalyst: excellent reactivity combined with facile catalyst recovery and recyclability. Chem Commun 47:9230–9232. doi:10.1039/C1CC12693H

    CAS  Article  Google Scholar 

  38. Koukabi N, Kolvari E, Zolfigol MA, Khazaei A, Shaghasemi BS, Fasahatib B (2012) A magnetic particle-supported sulfonic acid catalyst: tuning catalytic activity between homogeneous and heterogeneous catalysis. Adv Synth Catal 354:2001–2008. doi:10.1002/adsc.201100352

    CAS  Article  Google Scholar 

  39. Langpape M, Millet JMM, Ozkan US, Boudeulle M (1999) Study of cesium or cesium-transition metal-substituted Keggin-type phosphomolybdic acid as isobutane oxidation catalysts: I. Structural characterization. J Catal 181:80–90. doi:10.1006/jcat.1998.2217

    CAS  Article  Google Scholar 

  40. Lee I, Albiter MA, Zhang Q, Ge J, Yin Y, Zaera F (2011) New nanostructured heterogeneous catalysts with increased selectivity and stability. Phys Chem Chem Phys 13:2449–2456. doi:10.1039/C0CP01688H

    CAS  Article  Google Scholar 

  41. Liu J, Yang Q, Kapoor MP, Setoyama N, Inagaki S, Yang J, Zhang L (2005) Structural relation properties of hydrothermally stable functionalized mesoporous organosilicas and catalysis. J Phys Chem B 109:12250–12256. doi:10.1021/jp0509109

    CAS  Article  Google Scholar 

  42. Liu F, Meng X, Zhang Y, Ren L, Nawaz F, Xiao F-S (2010) Efficient and stable solid acid catalysts synthesized from sulfonation of swelling mesoporous polydivinylbenzenes. J Catal 271:52–58. doi:10.1016/j.jcat.2010.02.003

    CAS  Article  Google Scholar 

  43. Liu F, Kong W, Qi C, Zhu L, Xiao F-S (2012) Design and synthesis of mesoporous polymer-based solid acid catalysts with excellent hydrophobicity and extraordinary catalytic activity. ACS Catal 2:565–572. doi:10.1021/cs200613p

    CAS  Article  Google Scholar 

  44. Lv Z, Sun Q, Meng X, Xiao F-S (2013) Superhydrophilic mesoporous sulfonated melamine–formaldehyde resin supported palladium nanoparticles as an efficient catalyst for biofuel upgrade. J Mater Chem A 1:8630–8635. doi:10.1039/C3TA10916J

    CAS  Article  Google Scholar 

  45. Mata EG (1996) Phosphorus sulfur silicon, 117: 231. Taylor & Francis Online] [Web of Science®]. doi:10.1080/10426509608038790

  46. Mbaraka IK, Radu DR, Lin VSY, Shanks BH (2003) Organosulfonic acid-functionalized mesoporous silicas for the esterification of fatty acid. J Catal 219:329–336. doi:10.1016/S0021-9517(03)00193-3

    CAS  Article  Google Scholar 

  47. Melero JA, Iglesias J, Morales G (2009) Heterogeneous acid catalysts for biodiesel production: current status and future challenges. Green Chem 11:1285–1308. doi:10.1039/B902086A

    CAS  Article  Google Scholar 

  48. Misono M, Mizuno N, Katamura K, Kasai A, Konishi Y, Sakata K, Okuhara T, Yoneda Y (1982) Catalysis by heteropoly compounds. III. The structure and properties of 12-heteropolyacids of molybdenum and tungsten (H3PMo12 − x Wx O40) and their salts pertinent to heterogeneous catalysis. Bull Chem Soc Jpn 55:400–406. doi:10.1246/bcsj.55.400

    CAS  Article  Google Scholar 

  49. Mizuno N, Misono M (1998) Heterogeneous catalysis. Chem Rev 98:199–218. doi:10.1021/cr960401q

    CAS  Article  Google Scholar 

  50. Nakajima K, Okamura M, Kondo JN, Domen K, Tatsumi T, Hayashi S, Hara M (2008) Amorphous carbon bearing sulfonic acid groups in mesoporous silica as a selective catalyst. Chem Mater 21:186–193. doi:10.1021/cm801441c

    Article  Google Scholar 

  51. Nikoorazm M, Ghorbani-Choghamarani A, Mahdavi H, Esmaeili SM (2015) Efficient oxidative coupling of thiols and oxidation of sulfides using UHP in the presence of Ni or Cd salen complexes immobilized on MCM-41 mesoporous as novel and recoverable nanocatalysts. Micropor Mesopor Mat 211:174–181. doi:10.1016/j.micromeso.2015.03.011

    CAS  Article  Google Scholar 

  52. Noji M, Konno Y, Ishii K (2007) Metal triflate-catalyzed cationic benzylation and allylation of 1, 3-dicarbonyl compounds. J Org Chem 72:5161–5167. doi:10.1021/jo0705216

    CAS  Article  Google Scholar 

  53. Okamura M, Takagaki A, Toda M, Kondo JN, Domen K, Tatsumi T, Hara M, Hayashi S (2006) Acid-catalyzed reactions on flexible polycyclic aromatic carbon in amorphous carbon. Chem Mater 18:3039–3045. doi:10.1021/cm0605623

    CAS  Article  Google Scholar 

  54. Okuhara T (2002) Water-tolerant solid acid catalysts. Chem Rev 102:3641–3666. doi:10.1021/cr0103569

    CAS  Article  Google Scholar 

  55. Okuhara T, Mizuno N, Misono M (1996) Catalytic chemistry of heteropoly compounds. Adv Catal 41:113–252. doi:10.1016/S0360-0564(08)60041-3

    CAS  Google Scholar 

  56. Olah GA (1973) Friedel-crafts chemistry. Wiley, Hoboken

    Google Scholar 

  57. Olah GA, Prakash GKS, Sommer J (1985) Superacids. Wiley-Interscience, Hoboken

    Google Scholar 

  58. Pope MT (1983) Heteropoly and isopoly oxometalates (inorganic chemistry concepts vol. 8). Springer, Berlin

    Google Scholar 

  59. Rocchiccioli-Deltcheff C, Amirouche M, Fournier M (1992) Structure and catalytic properties of silica-supported polyoxomolybdates III. 12-molybdosilicic acid catalysts: vibrational study of the dispersion effect and nature of the Mo species in interaction with the silica support. J Catal 138:445–456. doi:10.1016/0021-9517(92)90296-T

    Article  Google Scholar 

  60. Sartori G, Maggi R (2006) Use of solid catalysts in Friedel-Crafts acylation reactions. Chem Rev 106:1077–1104. doi:10.1021/cr040695c

    CAS  Article  Google Scholar 

  61. Shirini F, Mamaghani M, Atghia SV (2011) Sulfonic acid-functionalized ordered nanoporous Na+-montmorillonite (SANM): A novel, efficient and recyclable catalyst for the chemoselective N-Boc protection of amines in solventless media. Catal Commun 12:1088–1094. doi:10.1016/j.catcom.2011.03.030

    CAS  Article  Google Scholar 

  62. Song IK, Kaba MS, Barteau MA (2002) Nanoscale investigation of mixed arrays of Keggin-type and Wells-Dawson-type heteropolyacids (HPAs) by scanning tunneling microscopy (STM). Langmuir 18:2358–2362. doi:10.1021/la0111811

    CAS  Article  Google Scholar 

  63. Song X, Zhu W, Yan Y, Gao H, Gao W, Zhang W, Jia M (2016) Selective oxidation of olefins with aqueous hydrogen peroxide over phosphomolybdic acid functionalized knitting aryl network polymer. J Mol Catal A: Chem 413:32–39. doi:10.1016/j.molcata.2015.12.012

    CAS  Article  Google Scholar 

  64. Tan G, Li Z (2012) Highly active, stable, and recyclable magnetic nano-size solid acid catalysts: efficient esterification of free fatty acid in grease to produce biodiesel. Green Chem 14:3077–3086. doi:10.1039/C2GC35779H

    Article  Google Scholar 

  65. Tao H, Yang H, Zhang Y, Ren J, Liu X, Wang Y, Lu G (2013) Space-confined synthesis of nanorod oriented-assembled hierarchical MFI zeolite microspheres. J Mater Chem A 1:13821–13827. doi:10.1039/C3TA12989F

    CAS  Article  Google Scholar 

  66. Te M, Fairbridge C, Ring Z (2001) Oxidation reactivities of dibenzothiophenes in polyoxometalate/H2 O2 and formic acid/H2 O2 systems. Appl Catal A 219:267–280. doi:10.1016/S0926-860X(01)00699-8

    CAS  Article  Google Scholar 

  67. Toda M, Takagaki A, Okamura M, Kondo JN, Hayashi S, Domen K, Hara M (2005) Green chemistry: biodiesel made with sugar catalyst. Nature 438:178. doi:10.1038/438178a

    CAS  Article  Google Scholar 

  68. Venier CG, Squires TG, Chen YY, Smith BF (1982) Peroxytrifluoroacetic acid oxidation of sulfides to sulfoxides and sulfones. J Org Chem 47:3773–3774. doi:10.1021/jo00140a040

    CAS  Article  Google Scholar 

  69. Voutyritsa E, Triandafillidi I, Kokotos CG (2017) Green Organocatalytic Oxidation of Sulfides to Sulfoxides and Sulfones. Synthesis 49:917–924. doi:10.1055/s-0036-1588315

    CAS  Google Scholar 

  70. Wang P, Wang X, Jing X, Zhu G (2000) Sol–gel-derived, polishable, 1: 12-phosphomolybdic acid-modified ceramic-carbon electrode and its electrocatalytic oxidation of ascorbic acid. Anal Chim Acta 424:51–56. doi:10.1016/S0003-2670(00)01134-X

    CAS  Article  Google Scholar 

  71. Wang X, Chen CC, Chen SY, Mou Y, Cheng S (2005) Arenesulfonic acid functionalized mesoporous silica as a novel acid catalyst for the liquid phase Beckmann rearrangement of cyclohexanone oxime to ɛ-caprolactam. Appl Catal A 281:47–54. doi:10.1016/j.apcata.2004.11.011

    CAS  Article  Google Scholar 

  72. Wang L, Zhang J, Yang S, Sun Q, Zhu L, Wu Q, Zhang H, Meng X, Xiao F-S (2013) Sulfonated hollow sphere carbon as an efficient catalyst for acetalisation of glycerol. J Mater Chem A 1:9422–9426. doi:10.1039/C3TA10956A

    CAS  Article  Google Scholar 

  73. Wang B, Zhang J, Zou X, Dong H, Yao P (2015) Selective oxidation of styrene to 1, 2-epoxyethylbenzene by hydrogen peroxide over heterogeneous phosphomolybdic acid supported on ionic liquid modified MCM-41. Chem Eng J 260:172–177. doi:10.1016/j.cej.2014.08.076

    CAS  Article  Google Scholar 

  74. Wilson K, Clark JH (2000) Solid acids and their use as environmentally friendly catalysts in organic synthesis. Pure Appl Chem 72:1313–1319. doi:10.1351/pac200072071313

    CAS  Article  Google Scholar 

  75. Xi J, Zhang Y, Xia Q, Liu X, Ren J, Lu G, Wang Y (2013) Direct conversion of cellulose into sorbitol with high yield by a novel mesoporous niobium phosphate supported Ruthenium bifunctional catalyst. Appl Catal A 459:52–58. doi:10.1016/j.apcata.2013.03.047

    CAS  Article  Google Scholar 

  76. Zhang Y, Wang J, Ren J, Liu X, Li X, Xia Y, Lu G, Wang Y (2012) Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water. Catal Sci Technol 2:2485–2491. doi:10.1039/C2CY20204B

    CAS  Article  Google Scholar 

  77. Zhao J, Li B, Onda K, Feng M, Petek H (2006) Solvated electrons on metal oxide surfaces. Chem Rev 106:4402–4427. doi:10.1021/cr050173c

    CAS  Article  Google Scholar 

  78. Zhao S, Cheng M, Li J, Tian J, Wang X (2011) One pot production of 5-hydroxymethylfurfural with high yield from cellulose by a Brønsted–Lewis–surfactant-combined heteropolyacid catalyst. Chem Commun 47:2176–2178. doi:10.1039/C0CC04444J

    CAS  Article  Google Scholar 

  79. Zhu Y, Stubbs LP, Ho F, Liu R, Ship CP, Maguire JA, Hosmane NS Magnetic (2010) nanocomposites: a new perspective in catalysis. ChemCatChem 2:365–374. doi:10.1002/cctc.200900314

    CAS  Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Semnan University Research Council for the financial support of this work.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Eskandar Kolvari.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1468 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Zolfagharinia, S., Kolvari, E. & Koukabi, N. A practical heteropolyacid nanocatalyst supported on nano-sized ceramic for the chemoselective oxidation of sulfides to sulfoxides through an experimental design approach. Chem. Pap. 71, 2505–2520 (2017). https://doi.org/10.1007/s11696-017-0246-0

Download citation

Keywords

  • Nano-ceramic tile waste supported phosphomolybdic acid
  • Heterogeneous catalyst
  • Oxidation of sulfides
  • Recoverable
  • Impregnation method