Advertisement

Chemical Papers

, Volume 71, Issue 11, pp 2233–2242 | Cite as

Phytochemical profiles and antioxidant capacity of the crude extracts, aqueous- and saponin-enriched butanol fractions of Helicteres hirsuta Lour. leaves and stems

  • Hong Ngoc Thuy PhamEmail author
  • Q. V. Vuong
  • Michael C. Bowyer
  • Christopher J. ScarlettEmail author
Original Paper

Abstract

This study aimed to compare phytochemical profiles and antioxidant capacity of various extracts including crude extracts, aqueous- and saponin-enriched butanol fractions prepared from the stems and leaves of Helicteres hirsuta Lour. The results revealed that all the three powdered extracts from the leaves and the stems possessed high levels of phenolics (177.07–241.03 mg GAE g−1), flavonoids (158.03–280.06 mg CE g−1) and saponins (165.77–1035.33 mg ESE g−1) and exhibited strong antioxidant capacity. HPLC analysis identified nine major compounds in the leaf powder crude extract; however, the leaf aqueous fraction had three extra compounds; whereas, the saponin-enriched butanol leaf fraction had seven extra compounds. For the stems, twelve main compounds were evident in either the powdered crude extract or the aqueous fraction, and five new compounds were revealed in the saponin-enriched butanol fraction. The findings revealed that the powdered aqueous fractions and saponin-enriched butanol fractions are potential sources of biologically active compounds for further investigation and industrial utilisation.

Keywords

Helicteres hirsuta Lour. Phytochemical profiles Phenolics Flavonoids Saponins Antioxidant capacity 

Notes

Acknowledgements

We greatly thank the University of Newcastle International Postgraduate Research Scholarship (UNIPRS) and University of Newcastle Research Scholarship Central 50:50 (UNRSC 50:50) that awarded the Ph.D. scholarship to Hong Ngoc Thuy Pham in 2015.

References

  1. Apak R, Güçlü K, Özyürek M, Karademir SE (2004) Novel total antioxidant capacity index for dietary polyphenols and vitamins C and E, using their cupric ion reducing capability in the presence of neocuproine: CUPRAC method. J Agric Food Chem 52:7970–7981. doi: 10.1021/jf048741x CrossRefGoogle Scholar
  2. Bhuyan DJ, Vuong QV, Chalmers AC, van Altena IA, Bowyer MC, Scarlett CJ (2016) Investigation of phytochemicals and antioxidant capacity of selected Eucalyptus species using conventional extraction. Chem Pap 70:567–575. doi: 10.1515/chempap-2015-0237 Google Scholar
  3. Borek C (2004) Dietary antioxidants and human cancer. Integr Cancer Ther 3:333–341. doi: 10.1177/1534735404270578 CrossRefGoogle Scholar
  4. Chin YW, Jones WP, Rachman I, Riswan S, Kardono LB, Chai HB, Farnsworth NR, Cordell GA, Swanson SM, Cassady JM, Kinghorn AD (2006) Cytotoxic lignans from the stems of Helicteres hirsuta collected in Indonesia. Phytother Res 20:62–65. doi: 10.1002/ptr.1806 CrossRefGoogle Scholar
  5. Chuakul W, Saralamp P, Boonpleng A (2002) Medicinal plants used in the Kutchum District, Yasothon Province, Thailand. Thai J Phytopharm 9:22–49Google Scholar
  6. Goldsmith CD, Vuong QV, Sadeqzadeh E, Stathopoulos CE, Roach PD, Scarlett CJ (2015) Phytochemical properties and anti-proliferative activity of Olea europaea L. leaf extracts against pancreatic cancer cells. Molecules 20:12992–13004. doi: 10.3390/molecules200712992 CrossRefGoogle Scholar
  7. Kamonwannasit S, Nantapong N, Kumkrai P, Luecha P, Kupittayanant S, Chudapongse N (2013) Antibacterial activity of Aquilaria crassna leaf extract against Staphylococcus epidermidis by disruption of cell wall. Ann Clinic Microbiol Antimicrob 12:1–7. doi: 10.1186/1476-0711-12-20 CrossRefGoogle Scholar
  8. Khanna V, Kannabiran K (2009) Anticancer-cytotoxic activity of saponins isolated from the leaves of Gymnema sylvestre and Eclipta prostrata on HeLa cells. Int J Green Pharm 3:227–229. doi: 10.4103/0973-8258.56280 CrossRefGoogle Scholar
  9. Kwon JH, Beälanger JMR, Pareä JRJ (2003) Optimization of microwave-assisted extraction (MAP) for Ginseng components by response surface methodology. J Agric Food Chem 51:1807–1810. doi: 10.1021/jf026068a CrossRefGoogle Scholar
  10. Lamson DW, Brignall MS (1999) Antioxidants in cancer therapy; their actions and interactions with oncologic therapies. Altern Med Rev 4:304–329Google Scholar
  11. Pham HNT, Nguyen VT, Vuong QV, Bowyer MC, Scarlett CJ (2015) Effect of extraction solvents and drying methods on the physicochemical and antioxidant properties of Helicteres hirsuta Lour. leaves. Technologies 3:285–301. doi: 10.3390/technologies3040285 CrossRefGoogle Scholar
  12. Pham HNT, Nguyen VT, Vuong QV, Bowyer MC, Scarlett CJ (2016) Bioactive compound yield and antioxidant capacity of Helicteres hirsuta Lour. stem as affected by various solvents and drying methods. J Food Process Preserv 41:e12879. doi: 10.1111/jfpp.12879 CrossRefGoogle Scholar
  13. Scarlett CJ, Vuong QV, Mccluskey A, Bowyer MC (2015) Pancreatic cancer drugs: case studies in synthesis and production. In: Scarlett CJ, Vuong QV (eds) Plant bioactive compounds for pancreatic cancer prevention and treatment. Nova Science Publishers, New York, pp 145–193Google Scholar
  14. Thaipong K, Boonprakob U, Crosby K, Cisneros-Zevallos L, Byrne DH (2006) Comparison of ABTS, DPPH, FRAP, and ORAC assays for estimating antioxidant activity from guava fruit extracts. J Food Compos Anal 19:669–675. doi: 10.1016/j.jfca.2006.01.003 CrossRefGoogle Scholar
  15. Vuong QV, Hirun S, Roach PD, Bowyer MC, Phillips PA, Scarlett CJ (2013) Effect of extraction conditions on total phenolic compounds and antioxidant activities of Carica papaya leaf aqueous extracts. J Herbal Med 3:104–111. doi: 10.1016/j.hermed.2013.04.004 CrossRefGoogle Scholar
  16. Vuong QV, Hirun S, Chuen TLK, Goldsmith CD, Murchie S, Bowyer MC, Phillips PA, Scarlett CJ (2015) Antioxidant and anticancer capacity of saponin-enriched Carica papaya leaf extracts. Int J Food Sci Technol 50:169–177. doi: 10.1111/ijfs.12618 CrossRefGoogle Scholar
  17. Xu Q, Shu Z, He W, Chen L, Yang S, Yang G, Liu Y, Li X (2012) Antitumor activity of Pulsatilla chinensis (Bunge) Regel saponins in human liver tumor 7402 cells in vitro and in vivo. Phytomedicine 19:293–300. doi: 10.1016/j.phymed.2011.08.066 CrossRefGoogle Scholar
  18. Yan LL, Zhang YJ, Gao WY, Man SL, Wang Y (2009) In vitro and in vivo anticancer activity of steroid saponins of Paris polyphylla var. yunnanensis. Exp Oncol 31:27–32Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.School of Environmental and Life Sciences, Faculty of ScienceUniversity of NewcastleOurimbahAustralia
  2. 2.Faculty of Food TechnologyNha Trang UniversityNha Trang CityVietnam

Personalised recommendations