Chemical Papers

, Volume 72, Issue 4, pp 821–828 | Cite as

Computational design of magnetically active trinuclear heterometallic complexes on the basis of 1,3,5-triazapentadiene ligands

  • Alyona A. Starikova
Original Paper


A series of trinuclear mixed-ligand complexes of iron(II) 2,6-di(pyrazol-1-yl)pyridine moieties with linkers on the basis of 1,3,5-triazapentadiene transition metal (M = Co, Ni, Cu, Zn) bischelates has computationally been designed using the density functional theory TPSSh/6-311++G(d,p) calculations. The systems possessing complete (M = Co, Ni) and partial (M = Cu, Zn) two-step spin-crossover phenomenon at ferrous ions have been revealed. Two spin-state switching mechanisms determining by spin-crossover at iron centers and configurational isomerism at cobalt ion may simultaneously occur in solution of corresponding heterometallic compound (M = Co). The nature of the exchange interactions between paramagnetic metal centers is controlled by variation of a metal in bischelate linker (M = Co, Ni, Cu, Zn). Energy and magnetic characteristics of electromeric forms of the complexes with nickel and copper central metal ions (M = Co, Ni) allow to consider them as promising candidates for the design of molecular switches.


Iron complexes Magnetic properties Spin-crossover Bischelate linker 1,3,5-triazapentadiene ligands DFT calculations 



This work has been supported by Russian Foundation for Basic Research (Grant No. 16-33-60019 mol_a_dk).

Supplementary material

11696_2017_195_MOESM1_ESM.doc (4.3 mb)
Electronic Supplementary Material associated with this article (details of the DFT calculations, including optimized geometries and energy parameters of the complexes I (Co, Ni, Cu, Zn) and III (Co, Ni, Cu, Zn)), and also the shape of natural magnetic orbital of the electromer 12 HSFeII-Cu-HSFeII can be found in the online version of this paper (DOI:  10.1007/s11696-017-0195-7). (DOC 4410 kb)


  1. Bally T (2010) Isomerism: the same but different. Nat Chem 2:165–166. doi: 10.1038/nchem.564 CrossRefGoogle Scholar
  2. Bannwarth A, Schmidt SO, Peters G, Sonnichsen FD, Thimm W, Herges R, Tuczek F (2012) FeIII Spin-Crossover Complexes with Photoisomerizable Ligands: experimental and Theoretical Studies on the Ligand-Driven Light-Induced Spin Change Effect. Eur J Inorg Chem 2012(16):2776–2783. doi: 10.1002/ejic.201101227 CrossRefGoogle Scholar
  3. Bokach NA, Kuznetsova TV, Simanova SA, Haukka M, Pombeiro AJL, Kukushkin VYu (2005) Nitrile–amidine coupling at Pt(IV) and Pt(II) centers. An easy entry to imidoylamidine complexes. Inorg Chem 44(14):5152–5160. doi: 10.1021/ic050037q
  4. Carbonera C, Costa JS, Money VA, Elhaïk J, Howard JAK, Halcrow MA, Létard J-F (2006) Photomagnetic properties of iron(II) spin crossover complexes of 2,6-dipyrazolylpyridine and 2,6-dipyrazolylpyrazine ligands. Dalton Trans 25:3058–3066. doi: 10.1039/b601366j CrossRefGoogle Scholar
  5. Clérac R, Cotton FA, Dunbar KR, Lu T, Murillo CA, Wang X (2000) A new linear tricobalt compound with di(2-pyridyl)amide (dpa) ligands: two-step spin crossover of [Co3(dpa)4Cl2][BF4]. J Am Chem Soc 122(10):2272–2278. doi: 10.1021/ja994051b CrossRefGoogle Scholar
  6. Elhaïk J, Kilner CA, Halcrow MA (2005) An iron(II) complex salt that crystallises in three crystal forms, one of which undergoes a sterically controlled incomplete spin-state transition on cooling. Cryst Eng Comm 7(23):151–157. doi: 10.1039/b417718e CrossRefGoogle Scholar
  7. Elhaïk J, Kilner CA, Halcrow MA (2006) Structural diversity in iron(II) complexes of 2,6-di(pyrazol-1-yl)pyridine and 2,6-di(3-methylpyrazol-1-yl)pyridine. Dalton Trans 6:823–830. doi: 10.1039/b510370c CrossRefGoogle Scholar
  8. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2013) Gaussian 09. Revision E.01. Gaussian Inc., WallingfordGoogle Scholar
  9. Glaser T, Theil H, Liratzis I, Weyhermüller T, Bill E (2006) Ferromagnetic coupling by orthogonal magnetic orbitals in a heterodinuclear CuIIVIVO complex and in a homodinuclear CuIICuII complex. Inorg Chem 45(13):4889–4891. doi: 10.1021/ic0606328 CrossRefGoogle Scholar
  10. Gushchin PV, Tyan MR, Bokach NA, Revenco MD, Haukka M, Wang M-J, Lai C-H, Chou P-T, Kukushkin VYu (2008) Novel tailoring reaction for two adjacent coordinated nitriles giving platinum 1,3,5-triazapentadiene complexes. Inorg Chem 47(24):11487–11500. doi: 10.1021/ic702483w CrossRefGoogle Scholar
  11. Gütlich P, Goodwin HA (eds) (2004) Spin Crossover in transition metal compounds, Top. Curr. Chem, vol 233–235. Springer, BerlinGoogle Scholar
  12. Halcrow MA (2005) The synthesis and coordination chemistry of 2,6-bis(pyrazolyl)pyridines and related ligands—versatile terpyridine analogues. Coord Chem Rev 249(24):2880–2908. doi: 10.1016/j.ccr.2005.03.010 CrossRefGoogle Scholar
  13. Halcrow MA (2007) The spin-states and spin-transitions of mononuclear iron(II) complexes of nitrogen-donor ligands. Polyhedron 26(14):3523–3576. doi: 10.1016/j.poly.2007.03.033 CrossRefGoogle Scholar
  14. Halcrow MA (ed) (2013) Spin-crossover materials: properties and applications. Wiley, Chichester. doi: 10.1002/9781118519301 Google Scholar
  15. Harvey JN, Aschi M, Schwarz H, Koch W (1998) The singlet and triplet states of phenyl cation. A hybrid approach for locating minimum energy crossing points between non-interacting potential energy surfaces. Theor Chem Acc 99(2):95–99. doi: 10.1007/s002140050309
  16. Hauser A (1991) Intersystem crossing in Fe(II) coordination compounds. Coord Chem Rev 111:275–290. doi: 10.1016/0010-8545(91)84034-3 CrossRefGoogle Scholar
  17. Heße N, Fröhlich R, Humelnicu I, Würthwein E-U (2005) 1,3,5-triazapentadienes as chelating ligands: 1,2,4-Triphenyl-1,3,5-triaza-pentadiene complexes of cobalt(II), nickel(II), palladium(II), copper(II) and zinc(II). Eur J Inorg Chem 2005(11):2189–2197. doi: 10.1002/ejic.200401010 CrossRefGoogle Scholar
  18. Holland JM, McAllister JA, Lu Z, Kilner CA, Thornton-Pett M, Halcrow MA (2001) An unusual abrupt thermal spin-state transition in [FeL2][BF4]2 [L = 2,6-di(pyrazol-1-yl)pyridine]. Chem Commun 6:577–578. doi: 10.1039/B100995H CrossRefGoogle Scholar
  19. Holland JM, Barrett SA, Kilner CA, Halcrow MA (2002) Control of the spin state of Fe(II) 2,6-di(pyrazol-1-yl)pyridine complexes by distal ligand substitution. Inorg Chem Commun 5(5):328–332. doi: 10.1016/s1387-7003(02)00398-2 CrossRefGoogle Scholar
  20. Igashira-Kamiyama A, Kajiwara T, Konno T, Ito T (2006) Ferromagnetic coupling promoted by K3 N:K2 N bridging system. Inorg Chem 45(16):6460–6466. doi: 10.1021/ic0520925 CrossRefGoogle Scholar
  21. Kahn O (1993) Molecular magnetism. VCH, New YorkGoogle Scholar
  22. Kahn O (2000) Chemistry and physics of supramolecular magnetic materials. Acc Chem Res 33(10):647–657. doi: 10.1021/ar9703138 CrossRefGoogle Scholar
  23. Kopylovich MN, Pombeiro AJL (2011) Coordination chemistry of 1,3,5-triazapentadienes. Coord Chem Rev 255(1–2):339–355. doi: 10.1016/j.ccr.2010.09.012 CrossRefGoogle Scholar
  24. Kopylovich MN, Pombeiro AJL, Fischer A, Kloo L, Kukushkin VYu (2003) Facile Ni(II)/ketoxime-mediated conversion of organonitriles into imidoylamidine ligands. Synthesis of imidoylamidines and acetyl amides. Inorg Chem 42(22):7239–7248. doi: 10.1021/ic0349813
  25. Kopylovich MN, Tronova EA, Haukka M, Kirillov AM, Kukushkin VYu, Fraústo da Silva JJR, Pombeiro AJL (2007) Identification of hexameric water and hybrid water–chloride clusters intercalated in the crystal hosts of (imidoylamidine)nickel(II) Complexes. Eur J Inorg Chem 2007(29):4621–4627. doi: 10.1002/ejic.200700462
  26. Kopylovich MN, Lasri J, Guedes da Silva MFC, Pombeiro AJL (2009) Single-pot template transformations of cyanopyridines on a PdII centre: syntheses of ketoimine and 2,4-dipyridyl-1,3,5-triazapentadiene palladium(II) complexes and their catalytic activity for microwave-assisted Suzuki-Miyaura and Heck reactions. Dalton Trans 16:3074–3084. doi: 10.1039/b820680e CrossRefGoogle Scholar
  27. Kopylovich MN, Kirillov AM, Tronova EA, Haukka M, Kukushkin VYu, Pombeiro AJL (2010) 1,3,5-triazapentadiene nickel(II) complexes derived from a ketoxime-mediated single-pot transformation of nitriles. Eur J Inorg Chem 2010(16):2425–2432. doi: 10.1002/ejic.201000019
  28. Miller JS, Drillon M (eds) (2001) Magnetism: molecules to materials II: molecule-based materials. Wiley-VCH, New YorkGoogle Scholar
  29. Money VA, Radosavljevic Evans I, Halcrow MA, Goeta AE, Howard JAK (2003) Light induced excited high spin-state trapping in [FeL2](BF4)2 (L = 2,6-di(pyrazol-1-yl)pyridine). Chem Commun 1:158–159. doi: 10.1039/b210146g CrossRefGoogle Scholar
  30. Money VA, Elhaïk J, Halcrow MA, Howard JAK (2004) The thermal and light induced spin transition in [FeL2](BF4)2 (L = 2,6-dipyrazol-1-yl-4-hydroxymethylpyridine). Dalton Trans 10:1516–1518. doi: 10.1039/b401155d CrossRefGoogle Scholar
  31. Nihei M, Ui M, Yokota M, Han L, Maeda A, Kishida H, Okamoto H, Oshio H (2005) Two-step spin conversion in a cyanide-bridged ferrous square. Angew Chem Int Ed 44(40):6484–6487. doi: 10.1002/anie.200502216 CrossRefGoogle Scholar
  32. Noodleman L (1981) Valence bond description of antiferromagnetic coupling in transition metal dimers. J Chem Phys 74(10):5737–5743. doi: 10.1063/1.440939 CrossRefGoogle Scholar
  33. Noro S-I, Kitagawa S, Yamashita M, Wada T (2002) New microporous coordination polymeraffording guest-coordination sites at channel walls. Chem Commun 3:222–223. doi: 10.1039/B108695B CrossRefGoogle Scholar
  34. Sarova GH, Bokach NA, Fedorov AA, Berberan-Santos MN, Kukushkin VYu, Haukka M, Fraústo da Silva JJR, Pombeiro AJL (2006) A new family of luminescent compounds: platinum(II) imidoylamidinates exhibiting pH-dependent room temperature luminescence. Dalton Trans 31:3798–3805. doi: 10.1039/B602083F CrossRefGoogle Scholar
  35. Shoji M, Koizumi K, Kitagawa Y, Kawakami T, Yamanaka S, Okumura M, Yamaguchi K (2006) A general algorithm for calculation of Heisenberg exchange integrals J in multispin systems. Chem Phys Lett 432(1–3):343–347. doi: 10.1016/j.cplett.2006.10.023 CrossRefGoogle Scholar
  36. Starikov AG, Starikova AA, Minkin VI (2016) Quantum-chemical study of spin crossover in cobalt complexes with an o-benzoquinone ligand. Dokl Chem 467(1):83–87. doi: 10.1134/S0012500816030113 CrossRefGoogle Scholar
  37. Starikova AA, Minkin VI (2016) Structure and magnetic properties of di-o-semiquinone complexes of alkali metals with a bischelate linker: a quantum chemical study. Mendeleev Commun 26(5):423–425. doi: 10.1016/j.mencom.2016.09.020 CrossRefGoogle Scholar
  38. Staroverov VN, Scuseria GE, Tao J, Perdew JP (2003) Comparative assessment of a new nonempirical density functional: molecules and hydrogen-bonded complexes. J Chem Phys 119(23):12129–12137. doi: 10.1063/1.1626543 CrossRefGoogle Scholar
  39. Tao JM, Perdew JP, Staroverov VN, Scuseria GE (2003) Climbing the density functional ladder: nonempirical meta-generalized gradient approximation designed for molecules and solids. Phys Rev Lett 91(14):146401. doi: 10.1103/PhysRevLett.91.146401 CrossRefGoogle Scholar
  40. Tong M-L, Wu Y-M, Tong Y-X, Chen X-M, Chang H-C, Kitagawa S (2003) Rational Design of a Ferromagnetic Trinuclear Copper(II) Complex with a Novel in situ Synthesised Metalloligand. Eur J Inorg Chem 2003(13):2385–2388. doi: 10.1002/ejic.200300197 CrossRefGoogle Scholar
  41. Zheng L-L, Zhang W-X, Qin L-J, Leng J-D, Lu J-X, Tong M-L (2007) Isolation of a pentadentate ligand and stepwise synthesis, structures, and magnetic properties of a new family of homo- and heterotrinuclear complexes. Inorg Chem 46(23):9548–9557. doi: 10.1021/ic070343z CrossRefGoogle Scholar
  42. Zhurko GA, Zhurko DA (2013) Chemcraft 1.7.

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Institute of Physical and Organic Chemistry at Southern Federal UniversityRostov-on-DonRussian Federation

Personalised recommendations