Chemical Papers

, Volume 72, Issue 4, pp 799–808 | Cite as

Synthesis and characterization of yttrium, europium, terbium and dysprosium complexes containing a novel type of triazolyl–oxazoline ligand

  • Alberto Scrivanti
  • Marco Bortoluzzi
  • Roberto Sole
  • Valentina Beghetto
Original Paper


We report the synthesis of a novel type of bidentate chiral ligand which structurally derives from the association of a 1,2,3-triazole ring with a chiral oxazoline. Yttrium and lanthanide nitrato-complexes of the new triazolyl–oxazoline ligand were prepared and characterized. The coordination mode of the ligand was ascertained by means of DFT calculations. Trivalent europium and terbium derivatives resulted appreciably photoluminescent upon excitation with UV light, showing the typical 5D0 → 7FJ and 5D4 → 7FJ emissions, respectively. These species were successfully used for the preparation of luminescent-doped polymeric materials.


Oxazoline Triazole Bidentate ligands Yttrium Lanthanides 



Ca’ Foscari University of Venice is gratefully acknowledged for financial support, Progetti di Ateneo 2014. Dr. Eleonora Balliana, Università Ca’ Foscari Venezia, is gratefully acknowledged for TG-DSC measurements.

Supplementary material

11696_2017_174_MOESM1_ESM.docx (40 kb)
Supplementary material 1 (DOCX 39 kb)


  1. Alaaeddine A, Amgoune A, Thomas CM, Dagorne S, Bellemin-Laponnaz S, Carpentier J-F (2006) Bis[bis(oxazolinato)] complexes of yttrium and lanthanum: molecular structure and use in polymerization of DL-lactide and DL-β-butyrolactone. Eur J Inorg Chem. doi: 10.1002/ejic.200600437 Google Scholar
  2. Al-Warhi TI, Al-Hazimi HMA, El-Faham A (2012) J Saudi Chem Soc 16:97–116. doi: 10.1016/j.jscs.2010.12.006 CrossRefGoogle Scholar
  3. Amadio E, Scrivanti A, Beghetto V, Bertoldini M, Alam MM, Matteoli U (2013a) A water-soluble pyridyl-triazole ligand for aqueous phase palladium catalyzed Suzuki–Miyaura coupling. RSC Adv 3:21636–21640. doi: 10.1039/c3ra44740e CrossRefGoogle Scholar
  4. Amadio E, Scrivanti A, Bortoluzzi M, Bertoldini M, Beghetto V, Matteoli U, Chessa G (2013b) A new palladium(II)–allyl complex containing a thioether-triazole ligand as active catalyst in Suzuki-Miyaura reaction. Use of tetraalkylammonium salts as promoters: Influence of the salt anion and cation on the catalytic activity. Inorg Chim Acta 405:188–195. doi: 10.1016/j.ica.2013.05.028 CrossRefGoogle Scholar
  5. Antoni P, Malkoch M, Vamvounis G, Nyström D, Nyström A, Lindgren M, Hult A (2008) Europium confined cyclen dendrimers with photophysically active triazoles. J Mater Chem 18:2545–2554. doi: 10.1039/b802197 CrossRefGoogle Scholar
  6. Armarego WLF, Perrin DD (1996) Purification of laboratory chemicals, 4th edn. Butterworth-Heinemann, OxfordGoogle Scholar
  7. Bennett SD, Core BA, Blake MP, Pope SJA, Mountford P, Ward BD (2014) Chiral lanthanide complexes: coordination chemistry, spectroscopy, and catalysis. Dalton Trans 43:5871–5885. doi: 10.1039/C4DT00114A CrossRefGoogle Scholar
  8. Bertini L, Luchinat C (1996) NMR of Paramagnetic Substances. Coord Chem Rev 150:77–110. doi: 10.1016/0010-8545(96)01243-X CrossRefGoogle Scholar
  9. Binnemans K (2009) Lanthanide-based luminescent hybrid materials. Chem Rev 109:4283–4374. doi: 10.1021/cr8003983 CrossRefGoogle Scholar
  10. Binnemans K (2015) Interpretation of europium(III) spectra. Coord Chem Rev 295:1–45. doi: 10.1016/j.ccr.2015.02.015 CrossRefGoogle Scholar
  11. Bonnet CS, Buron F, Caillé F, Shade CM, Drahoš B, Pellegatti L, Zhang J, Villette S, Helm L, Pichon C, Suzenet F, Petoud S, Tóth E (2012) Pyridine-based lanthanide complexes combining MRI and NIR luminescence activities. Chem Eur J 18:1419–1431. doi: 10.1002/chem.201102310 CrossRefGoogle Scholar
  12. Bünzli J-CG (2010) Lanthanide luminescence for biomedical analyses and imaging. Chem Rev 110:2729–2755. doi: 10.1021/cr900362e CrossRefGoogle Scholar
  13. Bünzli J-CG, Eliseeva SV (2010) Basics of lanthanide photophysics. In: Hänninen P, Härmä H (eds) Lanthanide luminescence: photophysical, analytical and biological aspects. Springer, BerlinGoogle Scholar
  14. Byrne JP, Kitchen JA, O’Brien JE, Peacock RD, Gunnlaugsson T (2015) Lanthanide directed self-assembly of highly luminescent supramolecular “peptide” bundles from α-amino acid functionalized 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands. Inorg Chem 54:1426–1439. doi: 10.1021/ic502384w CrossRefGoogle Scholar
  15. Byrne JP, Martínez-Calvo M, Peacock RD, Gunnlaugsson T (2016) Chiroptical probing of lanthanide-directed self-assembly formation using btp ligands formed in one-pot diazo-transfer/deprotection click reaction from chiral amines. Chem Eur J 22:486–490. doi: 10.1002/chem.201504257 CrossRefGoogle Scholar
  16. Cavallo G, Metrangolo P, Pilati T, Resnati G, Scrivanti A, Aversa M, Cariati E (2016) One “Click” access to self-complementary molecular modules for halogen bonding. RSC Adv 6:36723–36727. doi: 10.1039/c6ra05341f CrossRefGoogle Scholar
  17. Chamas ZEA, Guo X, Canet J-L, Gautier A, Boyer D, Mahiou R (2010) Clicked dipicolinic antennae for lanthanide luminescent probes. Dalton Trans 39:7091–7097. doi: 10.1039/c002982c CrossRefGoogle Scholar
  18. Chen C, Zhang S-Y, Song H-B, Shi W, Zhao B, Cheng P (2009) One-dimensional lanthanide coordination polymers as promising luminescent materials. Inorg Chim Acta 362:2749–2755. doi: 10.1016/j.ica.2008.12.021 CrossRefGoogle Scholar
  19. Chen ZM, Hilton MJ, Sigman MS (2016) Palladium-catalyzed enantioselective redox-relay heck arylation of 1,1-disubstituted homoallylic alcohols. J Am Chem Soc 138:11461–11464. doi: 10.1021/jacs.6b06994 CrossRefGoogle Scholar
  20. Chorazy S, Nakabayashi K, Arczynski M, Pełka R, S-i Ohkoshi, Sieklucka B (2014) Multifunctionality in bimetallic LnIII[WV(CN)8]3− (Ln = Gd, Nd) coordination helices: optical activity, luminescence, and magnetic coupling. Chem Eur J 20:7144–7159. doi: 10.1002/chem.201304772 CrossRefGoogle Scholar
  21. Chorazy S, Arczynski M, Nakabayashi K, Sieklucka B, S-i Ohkoshi (2015) Visible to near-infrared emission from LnIII(bis-oxazoline)–[MoV(CN)8] (Ln = Ce–Yb) magnetic coordination polymers showing unusual lanthanide-dependent sliding of cyanido-bridged layers. Inorg Chem 54:4724–4736. doi: 10.1021/acs.inorgchem.5b00040 CrossRefGoogle Scholar
  22. Correa-Ascencio M, Galván-Miranda EK, Rascón-Cruz F, Jiménez-Sandoval O, Jiménez-Sandoval SJ, Cea-Olivares R, Jancik V, Alfredo Toscano R, García-Montalvo V (2010) Lanthanide(III) complexes with 4,5-bis(diphenylphosphinoyl)-1,2,3-triazolate and the use of 1,10-phenanthroline as auxiliary ligand. Inorg Chem 49:4109–4116. doi: 10.1021/ic902120e CrossRefGoogle Scholar
  23. Cossi M, Rega N, Scalmani G, Barone V (2003) Energies, structures, and electronic properties of molecules in solution with the C-PCM solvation model. J Comput Chem 24:669–681. doi: 10.1002/jcc.10189 CrossRefGoogle Scholar
  24. de Bettencourt-Dias A, Rossini JSK (2016) Ligand design for luminescent lanthanide-containing metallopolymers. Inorg Chem 55:9954–9963. doi: 10.1021/acs.inorgchem.6b00946 CrossRefGoogle Scholar
  25. de Bettencourt-Dias A, Viswanathan S, Rollett A (2007) Thiophene-derivatized pybox and its highly luminescent lanthanide ion complexes. J Am Chem Soc 129:15436–15437. doi: 10.1021/ja076485+ CrossRefGoogle Scholar
  26. de Bettencourt-Dias A, Barber PS, Bauer S (2012) A water-soluble pybox derivative and its highly luminescent lanthanide ion complexes. J Am Chem Soc 134:6987–6994. doi: 10.1021/ja209572m CrossRefGoogle Scholar
  27. Desimoni G, Faita G, Guala M, Laurenti A, Mella M (2005) A new pyridine-2,6-bis(oxazoline) for efficient and flexible lanthanide-based catalysts of enantioselective reactions with 3-alkenoyl-2-oxazolidinones. Chem Eur J 11:3816–3824. doi: 10.1002/chem.200401213 CrossRefGoogle Scholar
  28. Di Pietro S, Imbert D, Mazzanti M (2014) An efficient triazole-pyridine-bistetrazolate platform for highly luminescent lanthanide complexes. Chem Commun 50:10323–10326. doi: 10.1039/c4cc04060k CrossRefGoogle Scholar
  29. Di Pietro S, Gautier N, Imbert D, Pécaut J, Mazzanti M (2016) Versatile pyridine-2,6-bis-tetrazolate scaffolds for the formation of highly luminescent lanthanide complexes. Dalton Trans 45:3429–3442. doi: 10.1039/c5dt04811g CrossRefGoogle Scholar
  30. Dolg M (2000) Effective core potentials. In: Grotendorst J (ed) Modern methods and algorithms of quantum chemistry, vol 1., John Neumann Institute for ComputingNIC series, Jülich, pp 479–508Google Scholar
  31. Evans DA, Wu J (2003) Enantioselective rare-earth catalyzed quinone Diels–Alder reactions. J Am Chem Soc 125:10162–10163. doi: 10.1021/ja0367602 CrossRefGoogle Scholar
  32. Fulmer GR, Miller AJM, Sherden NH, Gottlieb HE, Nudelman A, Stoltz BM, Bercaw JE, Goldberg KI (2010) NMR chemical shifts of trace impurities: common laboratory solvents, organics, and gases in deuterated solvents relevant to the organometallic chemist. Organometallics 29:2176–2179. doi: 10.1021/om100106e CrossRefGoogle Scholar
  33. Golas PL, Tsarevsky NV, Matyjaszewski K (2008) Structure–reactivity correlation in ‘‘Click’’ chemistry: substituent effect on azide reactivity. Macromol Rapid Commun 29:1167–1171. doi: 10.1002/marc.200800118 CrossRefGoogle Scholar
  34. Hay PJ, Wadt WR (1985) Ab initio effective core potentials for molecular calculations. Potentials for the transition metal atoms Sc to Hg. J Chem Phys 82:270–283. doi: 10.1063/1.448799 CrossRefGoogle Scholar
  35. Henre WJ, Ditchfield R, Pople JA (1972) Self-consistent molecular orbital methods. XII. Further extensions of gaussian-type basis sets for use in molecular orbital studies of organic molecules. J Chem Phys 56:2257–2261. doi: 10.1063/1.1677527 CrossRefGoogle Scholar
  36. Hong S, Tian S, Metz MV, Marks TJ (2003) C2-symmetric bis(oxazolinato)lanthanide catalysts for enantioselective intramolecular hydroamination/cyclization. J Am Chem Soc 125:14768–14783. doi: 10.1021/ja0364672 CrossRefGoogle Scholar
  37. Indapurkar A, Henriksen B, Tolman J, Fletcher J (2013) Evaluation of triazole-chelated lanthanides as chemically stabile bioimaging agents. J Pharm Sci 102:2589–2598. doi: 10.1002/jps.23616 CrossRefGoogle Scholar
  38. Jauregui M, Perry WS, Allain C, Vidler LR, Willis MC, Kenwright AM, Snaith JS, Stasiuk GJ, Lowe MP, Faulkner S (2009) Changing the local coordination environment in mono- and bi- nuclear lanthanide complexes through “click” chemistry. Dalton Trans. doi: 10.1039/b911588a Google Scholar
  39. Kawashita Kuya M, Serra OA, Lakatos Osorio VK (1975) Hexafluorophosphate as a non-coordinating anion in lanthanide complexes—I. Dimethyl sulfoxide complexes. J Inorg Nucl Chem 37:1998–1999. doi: 10.1016/0022-1902(75)80935-3 CrossRefGoogle Scholar
  40. Kitchen JA, Barry DE, Mercs L, Albrecht M, Peacock RD, Gunnlaugsson T (2012) Circularly polarized lanthanide luminescence from Langmuir–Blodgett films formed from optically active and amphiphilic EuIII-based self-assembly complexes. Angew Chem Int Ed 51:704–708. doi: 10.1002/anie.201106863 CrossRefGoogle Scholar
  41. Krishnamurthy VN, Soundararajan S (1967) Dimethyl sulphoxide complexes of rare-earth perchlorates. J Inorg Nucl Chem 29:517–521. doi: 10.1016/0022-1902(67)80056-3 CrossRefGoogle Scholar
  42. Li D-P, Wang T-W, Li C-H, Liu D-S, Li Y-Z, You X-Z (2010) Single-ion magnets based on mononuclear lanthanide complexes with chiral Schiff base ligands [Ln(FTA)3L] (Ln = Sm, Eu, Gd, Tb and Dy). Chem Commun 46:2929–2931. doi: 10.1039/B924547B CrossRefGoogle Scholar
  43. Lin CY, George MW, Gill PMW (2004) EDF2: a density functional for predicting molecular vibrational frequencies. Aust J Chem 57:365–370. doi: 10.1071/CH03263 CrossRefGoogle Scholar
  44. Maisonial A, Serafin P, Traikia M, Debiton E, Tery EV, Aitken DJ, Lemoine P, Viossat B, Gautier A (2008) Click chelators for platinum-based anticancer drugs. Eur J Inorg Chem. doi: 10.1002/ejic.200700849 Google Scholar
  45. Mallagaray A, Domínguez G, Peters T, Pérez-Castells J (2016) A rigid lanthanide binding tag to aid NMR studies of a 70 kDa homodimeric coat protein of human norovirus. Chem Commun 52:601–604. doi: 10.1039/c5cc05827a CrossRefGoogle Scholar
  46. McCarney EP, Byrne JP, Twamley B, Martínez-Calvo M, Ryan G, Möbius ME, Gunnlaugsson T (2015) Self-assembly formation of a healable lanthanide luminescent supramolecular metallogel from 2,6-bis(1,2,3-triazol-4-yl)pyridine (btp) ligands. Chem Commun 51:14123–14126. doi: 10.1039/c5cc03139g CrossRefGoogle Scholar
  47. Molloy JK, Kotova O, Peacock RD, Gunnlaugsson T (2012) Synthesis of luminescent homo-dinuclear cationic lanthanide cyclen complexes bearing amide pendant arms through the use of copper catalysed (1,3-Huisgen, CuAAC) click chemistry. Org Biomol Chem 10:314–322. doi: 10.1039/c1ob06203d CrossRefGoogle Scholar
  48. Muller JM, Nash KL (2016) Synthesis and characterization of 6,6′-bis(1-(2-ethylhexyl)-1H-1,2,3-triazol-4-yl)-2,2′-bipyridine (EH–BTzBP) for actinide/lanthanide extraction and separation. Solvent Extr Ion Exch 34:322–333. doi: 10.1080/07366299.2016.1172852 CrossRefGoogle Scholar
  49. Muller JM, Galley SS, Albrecht-Schmitt TE, Nash KL (2016) Characterization of lanthanide complexes with bis-1,2,3-triazolebipyridine ligands involved in actinide/lanthanide separation. Inorg Chem 55:11454–11461. doi: 10.1021/acs.inorgchem.6b02005 CrossRefGoogle Scholar
  50. Narbutt J, Oziminski WP (2012) Selectivity of bis-triazinyl bipyridine ligands for americium(III) in Am/Eu separation by solvent extraction. Part 1. Quantum mechanical study on the structures of BTBP complexes and on the energy of the separation. Dalton Trans 41:14416–14424. doi: 10.1039/C2DT31503C CrossRefGoogle Scholar
  51. Narbutt J, Wodyński A, Pecul M (2015) The selectivity of diglycolamide (TODGA) and bis-triazine-bipyridine (BTBP) ligands in actinide/lanthanide complexation and solvent extraction separation—a theoretical approach. Dalton Trans 44:2657–2666. doi: 10.1039/C4DT02657H CrossRefGoogle Scholar
  52. Ogden MD, Hoch CL, Sinkov SI, Patrick Meier G, Lumetta GJ, Nash KL (2011) Complexation studies of bidentate heterocyclic N-donor ligands with Nd(III) and Am(III). J Solution Chem 40:1874–1888. doi: 10.1007/s10953-011-9762-7 CrossRefGoogle Scholar
  53. Qin J-S, Zhang S-R, Du D-Y, Shen P, Bao S-J, Lan Y-Q, Su Z-M (2014) A microporous anionic metal–organic framework for sensing luminescence of lanthanide(III) ions and selective absorption of dyes by ionic exchange. Chem Eur J 20:5625–5630. doi: 10.1002/chem.201304480 CrossRefGoogle Scholar
  54. Ramalingam SK, Soundararajan S (1967) Dimethyl sulphoxide complexes of lanthanide and yttrium nitrates. J Inorg Nucl Chem 29:1763–1768. doi: 10.1016/0022-1902(67)80220-3 CrossRefGoogle Scholar
  55. Shao Y, Gan Z, Epifanovsky E, Gilbert ATB, Wormit M, Kussmann J, Lange AW, Behn A, Deng J, Feng X, Ghosh D, Goldey M, Horn PR, Jacobson LD, Kaliman I, Khaliullin RZ, Kuś T, Landau A, Liu J, Proynov EI, Rhee YM, Richard RM, Rohrdanz MA, Steele RP, Sundstrom EJ, Woodcock HL III, Zimmerman PM, Zuev D, Albrecht B, Alguire E, Austin B, Beran GJO, Bernard YA, Berquist E, Brandhorst K, Bravaya KB, Brown ST, Casanova D, Chang C-M, Chen Y, Chien SH, Closser KD, Crittenden DL, Diedenhofen M, DiStasio RA Jr, Do H, Dutoi AD, Edgar RG, Fatehi S, Fusti-Molnar L, Ghysels A, Golubeva-Zadorozhnaya A, Gomes J, Hanson-Heine MWD, Harbach PHP, Hauser AW, Hohenstein EG, Holden ZC, Jagau T-C, Ji H, Kaduk B, Khistyaev K, Kim J, Kim J, King RA, Klunzinger P, Kosenkov D, Kowalczyk T, Krauter CM, Lao KU, Laurent AD, Lawler KV, Levchenko SV, Lin CY, Liu F, Livshits E, Lochan RC, Luenser A, Manohar P, Manzer SF, Mao S-P, Mardirossian N, Marenich AV, Maurer SA, Mayhall NJ, Neuscamman E, Melania Oana C, Olivares-Amaya E, O’Neill DP, Parkhill JA, Perrine TM, Peverati R, Prociuk A, Rehn DR, Rosta E, Russ NJ, Sharada SM, Sharma S, Small DW, Sodt A, Stein T, Stück D, Su Y-C, Thom AJW, Tsuchimochi T, Vanovschi V, Vogt L, Vydrov O, Wang T, Watson MA, Wenzel J, White A, Williams CF, Yang J, Yeganeh S, Yost SR, You Z-Q, Zhang IY, Zhang X, Zhao Y, Brooks BR, Chan GKL, Chipman DM, Cramer CJ, Goddard WA III, Gordon MS, Hehre WJ, Klamt A, Schaefer HF III, Schmidt MW, Sherrill CD, Truhlar DG, Warshel A, Xu X, Aspuru-Guzik A, Baer R, Bell AT, Besley NA, Chai J-D, Dreuw A, Dunietz BD, Furlani TR, Gwaltney SR, Hsu C-P, Jung Y, Kong J, Lambrecht DS, Liang W, Ochsenfeld C, Rassolov VA, Slipchenko LV, Subotnik JE, Van Voorhis T, Herbert JM, Krylov AI, Gill PMW, Head-Gordon M (2015) Advances in molecular quantum chemistry contained in the Q-Chem program package. Mol Phys 113:184–215CrossRefGoogle Scholar
  56. Shimizu H, Holder JC, Stoltz BM (2013) A scalable synthesis of the (S)-4-(tert-butyl)-2-(pyridin-2-yl)-4,5-dihydrooxazole ((S)-t-BuPyOx) ligand. Beilstein J Org Chem 9:1637–1642. doi: 10.3762/bjoc.9.187 and references therein CrossRefGoogle Scholar
  57. Stasiuk GJ, Lowe MP (2009) Click chemistry with lanthanide complexes: a word of caution. Dalton Trans. doi: 10.1039/b918891f Google Scholar
  58. Struthers H, Mindt TL, Schibli R (2010) Metal chelating systems synthesized using the copper(I) catalyzed azide-alkyne cycloaddition. Dalton Trans 39:675–696. doi: 10.1039/B912608 CrossRefGoogle Scholar
  59. Sun L, Li Y, Liang Z, Yu J, Xu R (2012) Structures and properties of lanthanide metal–organic frameworks based on a 1,2,3-triazole-containing tetracarboxylate ligand. Dalton Trans 41:12790–12796. doi: 10.1039/c2dt31717f CrossRefGoogle Scholar
  60. Taha ZA, Ajlouni AM, Al-Mustafa J (2013) Thermal decomposition of lanthanide(III) complexes of bis-(salicylaldehyde)-1,3-propylenediimine Schiff base ligand. Chem Pap 67:194–201. doi: 10.2478/s11696-012-0262-z CrossRefGoogle Scholar
  61. Tropiano M, Record CJ, Morris E, Rai HS, Allain C, Faulkner S (2012) Synthesis and spectroscopic study of d–f hybrid lanthanide complexes derived from triazolylDO3A. Organometallics 31:5673–5676. doi: 10.1021/om3003569 CrossRefGoogle Scholar
  62. Tropiano M, Kenwright AM, Faulkner S (2015) Lanthanide complexes of azidophenacyl-DO3A as new synthons for click chemistry and the synthesis of heterometallic lanthanide arrays. Chem Eur J 21:5697–5699. doi: 10.1002/chem.201500188 CrossRefGoogle Scholar
  63. Turanov AN, Karandashev VK, Sharova EV, Genkina GK, Artyushin OI (2015) Bis(carbamoylmethylphosphine oxide) ligands fixed on the arene core via 1,2,3-triazole linkers: novel effective extractants for palladium, lanthanides and actinides. RSC Adv 5:27640–27648. doi: 10.1039/C5RA00120J CrossRefGoogle Scholar
  64. Ullrich CA (2012) Time-dependent density-functional theory. Oxford University Press, Oxford, pp 45–210Google Scholar
  65. Vinodkumar CR, Muraleedharan Nair MK, Radhakrishnan PK (2000) Thermal studies on lanthanide nitrate complexes of 4-N-(2′-furfurylidene)aminoantipyrine. J Therm Anal Cal 61:143–149. doi: 10.1023/A:1010120909987 CrossRefGoogle Scholar
  66. Wang S, Luo Q, Zhou X, Zeng Z (1993) Synthesis, characterization and luminescence properties of lanthanide(II) complexes with 2,6-bis(benzimidazol-2′-yl)pyridine. Polyhedron 12:1939–1945. doi: 10.1016/S0277-5387(00)81434-5 CrossRefGoogle Scholar
  67. Wang D, Sun L, Hao C, Yan Y, Liang Z (2016) Lanthanide metal–organic frameworks based on a 1,2,3-triazolecontaining tricarboxylic acid ligand for luminescence sensing of metal ions and nitroaromatic compounds. RSC Adv 6:57828–57834. doi: 10.1039/C6RA06303A CrossRefGoogle Scholar
  68. Ward BD, Gade LH (2012) Rare earth metal oxazoline complexes in asymmetric catalysis. Chem Commun 48:10587–10599. doi: 10.1039/c2cc34997c CrossRefGoogle Scholar
  69. Wehbie M, Arrachart G, Karamé I, Ghannam L, Pellet-Rostaing S (2016) Triazole diglycolamide cavitand for lanthanide extraction. Sep Purif Technol 169:17–24. doi: 10.1016/j.seppur.2016.06.003 CrossRefGoogle Scholar
  70. Yang Y, Jiang F, Liu C, Chen L, Gai Y, Pang J, Su K, Wan X, Hong M (2016) Self-assembly syntheses, structural characterization, and luminescent properties of lanthanide coordination polymers constructed by three triazole-carboxylate ligands. Cryst Growth Des 16:2266–2276. doi: 10.1021/acs.cgd.6b00060 CrossRefGoogle Scholar
  71. Zinna F, Resta C, Abbate S, Castiglioni E, Longhi G, Mineo P, Di Bari L (2015) Circularly polarized luminescence under near-UV excitation and structural elucidation of a Eu complex. Chem Commun 51:11903–11906. doi: 10.1039/C5CC04283F CrossRefGoogle Scholar
  72. Zou J-Y, Xu N, Shi W, Gao H-L, Cui J-Z, Cheng P (2013) A new family of 3d–4f heterometallic coordination polymers assembled with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. RSC Adv 3:21511–21516. doi: 10.1039/C3RA43118E CrossRefGoogle Scholar
  73. Zou J-Y, Shi W, Xu N, Gao HL, Cui J-Z, Cheng P (2014) Cobalt(II)–lanthanide(III) heterometallic metal–organic Frameworks with unique (6,6)-connected nia topologies with 1H-1,2,3-triazole-4,5-dicarboxylic acid: syntheses, structures and magnetic properties. Eur J Inorg Chem. doi: 10.1002/ejic.201301312 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  1. 1.Dipartimento di Scienze Molecolari e NanosistemiUniversità Ca’ Foscari VeneziaMestreItaly

Personalised recommendations