Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum

Abstract

Emerging resistance of microbial cells towards antibiotics or disinfectants leads to an increase of nosocomial diseases, often biofilm related, and gives rise to the need for research for new antimicrobial substances. These studies are often focused on substances that are able to support the efficacy of currently used antimicrobials, reduce their required dosage and reduce the probability of resistance development. This work brings new insights into the in vitro interaction of rhamnolipid biosurfactant and amphotericin B against Candida sp. or Trichosporon sp.. The minimum inhibitory concentrations and fractional inhibitory concentration indexes for both planktonic and biofilm cells were determined by the chequerboard microdilution method. Combination effect of rhamnolipid and amphotericin B was observed for both yeasts. Synergy, defined as a fractional inhibitory concentration (FICi) index of 0.50, was observed in both planktonic and biofilm cells of Trichosporon cutaneum. For C. parapsilosis, synergistic effect (FICi 0.5) was observed for planktonic cells, and additive effect (FICi 0.8) for biofilm cells. The influence of concentrations established as FICi on biofilm formation and susceptibility was studied by light microscopy. The highest inhibition (90% colonized area reduction) of initial adhesion of C. parapsilosis was observed when biofilm FIC was applied.

This is a preview of subscription content, log in to check access.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Abbreviations

MICP :

Minimum inhibitory concentration for planktonic cells

MICB :

Minimum inhibitory concentration for adherent cells

FICP :

Fractional inhibitory concentration for planktonic cells

FICB :

Fractional inhibitory concentration for adherent cells

FIC:

Fractional inhibitory concentration

FICi:

Fractional inhibitory concentration index

References

  1. Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55(8):999–1008. doi:10.1099/jmm.0.46569-0

    CAS  Article  Google Scholar 

  2. Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. doi:10.1093/jac/48.suppl_1.5

    CAS  Article  Google Scholar 

  3. Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929. doi:10.1007/s00253-014-6169-6

    CAS  Article  Google Scholar 

  4. Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G (1998) In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother 41(1):59–65. doi:10.1093/Jac/41.1.59

    CAS  Article  Google Scholar 

  5. Cordeiro RD, Serpa R, Alexandre CFU, Marques FJD, de Melo CVS, Franco JD, Evangelista AJD, de Camargo ZF, Brilhante RSN, Rocha MFG, Moreira JLB, Bandeira TDPG, Sidrim JJC (2015) Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. J Med Microbiol 64:1277–1286. doi:10.1099/jmm.0.000159

    CAS  Article  Google Scholar 

  6. d’Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7(4):465–470. doi:10.2174/138945006776359458

    Article  Google Scholar 

  7. Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50(10):3269–3276. doi:10.1128/Aac.00556-06

    Article  Google Scholar 

  8. Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193. doi:10.1128/Cmr.15.2.167-193.2002

    CAS  Article  Google Scholar 

  9. Franzot SP, Casadevall A (1997) Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 41(2):331–336

    CAS  Google Scholar 

  10. Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256. doi:10.1016/S0065-2911(02)46005-5

    CAS  Article  Google Scholar 

  11. Girmenia C, Venditti M, Martino P (2003) Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis 46(3):227–231. doi:10.1016/s0732-8893(03)00064-6

    CAS  Article  Google Scholar 

  12. Guo N, Wu XP, Yu L, Liu JB, Meng RZ, Jin J, Lu HJ, Wang XL, Yan SH, Deng XM (2009) In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol Med Microbiol 58(2):193–201. doi:10.1111/j.1574-695X.2009.00620.x

    Article  Google Scholar 

  13. Hoskova M, Jezdik R, Schreiberova O, Chudoba J, Sir M, Cejkova A, Masak J, Jirku V, Rezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51. doi:10.1016/j.jbiotec.2014.11.014

    CAS  Article  Google Scholar 

  14. Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. doi:10.3389/fmicb.2012.00012

    Article  Google Scholar 

  15. Jiang LF, Shen C, Long XW, Zhang GL, Meng Q (2014) Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 98(24):10187–10196. doi:10.1007/s00253-014-6065-0

    CAS  Article  Google Scholar 

  16. Karashima R, Yamakami Y, Yamagata E, Tokimatsu I, Hiramatsu K, Nasu M (2002) Increased release of glucuronoxylomannan antigen and induced phenotypic changes in Trichosporon asahii by repeated passage in mice. J Med Microbiol 51(5):423–432. doi:10.1099/0022-1317-51-5-423

    CAS  Article  Google Scholar 

  17. Kontoyiannis DP, Lewis RE (2004) Toward more effective antifungal therapy: the prospects of combination therapy. Br J Haematol 126(2):165–175. doi:10.1111/j.1365-2141.2004.05007.x

    CAS  Article  Google Scholar 

  18. Kumar SN, Aravind SR, Sreelekha TT, Jacob J, Kumar BS (2015) Asarones from Acorus calamus in combination with azoles and amphotericin B: a novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl Biochem Biotechnol 175(8):3683–3695. doi:10.1007/s12010-015-1537-y

    CAS  Article  Google Scholar 

  19. Kvasnickova E, Matatkova O, Cejkova A, Masak J (2015) Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods 118:106–112. doi:10.1016/j.mimet.2015.09.002

    CAS  Article  Google Scholar 

  20. Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:91. doi:10.1186/s12951-015-0147-8

    Article  Google Scholar 

  21. Leung CY, Chan YC, Samaranayake LP, Seneviratne CJ (2012) Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. J Hosp Infect 81(2):79–86. doi:10.1016/j.jhin.2011.09.014

    CAS  Article  Google Scholar 

  22. Li H, Lu Q, Wan Z, Zhang J (2010) In vitro combined activity of amphotericin B, caspofungin and voriconazole against clinical isolates of Trichosporon asahii. Int J Antimicrob Agents 35(6):550–552. doi:10.1016/j.ijantimicag.2010.01.013

    CAS  Article  Google Scholar 

  23. Liao Y, Zhao H, Lu XL, Yang ST, Zhou JF, Yang RY (2015) Efficacy of ethanol against Trichosporon asahii biofilm in vitro. Med Mycol 53(4):396–404. doi:10.1093/mmy/myv006

    CAS  Article  Google Scholar 

  24. Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73(14):4592–4601. doi:10.1128/AEM.02506-06

    CAS  Article  Google Scholar 

  25. Monteiro AS, Miranda TT, Lula I, Denadai AM, Sinisterra RD, Santoro MM, Santos VL (2011) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloid Surf B Biointerfaces 84(2):467–476. doi:10.1016/j.colsurfb.2011.02.001

    CAS  Article  Google Scholar 

  26. Nikolaev YA, Plakunov VK (2007) Biofilm—”City of microbes” or an analogue of multicellular organisms? Microbiology 76(2):125–138. doi:10.1134/S0026261707020014

    CAS  Article  Google Scholar 

  27. Nunes JM, Bizerra FC, Ferreira RC, Colombo AL (2013) Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother 57(1):382–389. doi:10.1128/AAC.01647-12

    Article  Google Scholar 

  28. Pires RH, Montanari LB, Martins CH, Zaia JE, Almeida AM, Matsumoto MT, Mendes-Giannini MJ (2011) Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 172(6):453–464. doi:10.1007/s11046-011-9448-0

    CAS  Article  Google Scholar 

  29. Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, Jiang YY (2006) Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother 50(3):1096–1099. doi:10.1128/AAC.50.3.1096-1099.2006

    CAS  Article  Google Scholar 

  30. Rezanka T, Kolouchova I, Cejkova A, Sigler K (2012) Natural products: strategic tools for modulation of biofilm formation. In: Atta-ur-Rahman F (ed) Studies in natural products chemistry, vol 38. Elsevier, Amsterdam, pp 269–303

    Google Scholar 

  31. Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7(9):e1002257. doi:10.1371/journal.ppat.1002257

    CAS  Article  Google Scholar 

  32. Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. doi:10.1093/Jac/Dkl024

    CAS  Article  Google Scholar 

  33. Rosato A, Vitali C, Gallo D, Balenzano L, Mallamaci R (2008) The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine 15(8):635–638. doi:10.1016/j.phymed.2008.05.001

    Article  Google Scholar 

  34. Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA (2012) Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol 57(6):501–508. doi:10.1007/s12223-012-0164-z

    CAS  Article  Google Scholar 

  35. Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2(2):73–85. doi:10.1016/S1473-3099(02)00181-0

    CAS  Article  Google Scholar 

  36. Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MJSM (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24. doi:10.1099/Jmm.0.045054-0

    CAS  Article  Google Scholar 

  37. Serena C, Pastor FJ, Gilgado F, Mayayo E, Guarro J (2005) Efficacy of micafungin in combination with other drugs in a murine model of disseminated trichosporonosis. Antimicrob Agents Chemother 49(2):497–502. doi:10.1128/Aac.49.2.497-502.2005

    CAS  Article  Google Scholar 

  38. Sharma M, Manoharlal R, Negi AS, Prasad R (2010) Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 10(5):570–578. doi:10.1111/j.1567-1364.2010.00637.x

    CAS  Google Scholar 

  39. Sharma G, Raturi K, Dang S, Gupta S, Gabrani R (2014) Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res 16(5):535–541. doi:10.1080/10286020.2014.911289

    CAS  Article  Google Scholar 

  40. Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288–305. doi:10.1111/j.1574-6976.2011.00278.x

    CAS  Article  Google Scholar 

  41. Singh N, Shetye GS, Zheng H, Sun J, Luk YY (2016) Chemical signals of synthetic disaccharide derivatives dominate rhamnolipids at controlling multiple bacterial activities. ChemBioChem 17(1):102–111. doi:10.1002/cbic.201500396

    CAS  Article  Google Scholar 

  42. Sun W, Su J, Xu S, Yan D (2012) Trichosporon asahii causing nosocomial urinary tract infections in intensive care unit patients: genotypes, virulence factors and antifungal susceptibility testing. J Med Microbiol 61(Pt 12):1750–1757. doi:10.1099/jmm.0.049817-0

    CAS  Article  Google Scholar 

  43. Sweeney MT, Zurenko GE (2003) In vitro activities of linezolid combined with other antimicrobial agents against staphylococci, enterococci, pneumococci, and selected gram-negative organisms. Antimicrob Agents Chemother 47(6):1902–1906. doi:10.1128/Aac.47.6.1902-1906.2003

    CAS  Article  Google Scholar 

  44. Taha MO, Al-Bakri AG, Zalloum WA (2006) Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening. Bioorg Med Chem Lett 16(22):5902–5906. doi:10.1016/j.bmcl.2006.08.069

    CAS  Article  Google Scholar 

  45. Vediyappan G, Rossignol T, d’Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54(5):2096–2111. doi:10.1128/Aac.01638-09

    CAS  Article  Google Scholar 

  46. Wei GX, Xu X, Wu CD (2011) In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch Oral Biol 56(6):565–572. doi:10.1016/j.archoralbio.2010.11.021

    CAS  Article  Google Scholar 

  47. Yu VL, Zuravleff JJ, Bornholm J, Archer G (1984) In vitro synergy testing of triple antibiotic combinations against Staphylococcus epidermidis isolates from patients with endocarditis. J Antimicrob Chemother 14(4):359–366. doi:10.1093/Jac/14.4.359

    CAS  Article  Google Scholar 

  48. Zhou Y, Wang G, Li Y, Liu Y, Song Y, Zheng W, Zhang N, Hu X, Yan S, Jia J (2012) In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob Agents Chemother 56(6):3250–3260. doi:10.1128/AAC.06082-11

    CAS  Article  Google Scholar 

  49. Ziccardi M, Souza LO, Gandra RM, Galdino AC, Baptista AR, Nunes AP, Ribeiro MA, Branquinha MH, Santos AL (2015) Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: species distribution, antifungal susceptibility and virulence attributes. Int J Med Microbiol 305(8):848–859. doi:10.1016/j.ijmm.2015.08.003

    CAS  Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Czech Science Foundation (GA CR) [14-23597S] and by the “Operational Programme Prague—Competitiveness” [CZ.2.16/3.1.00/24503] and the “National Program of Sustainability I”—NPU I (LO1601-No.: MSMT-43760/2015).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Olga Maťátková.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Maťátková, O., Kolouchová, I., Kvasničková, E. et al. Synergistic action of amphotericin B and rhamnolipid in combination on Candida parapsilosis and Trichosporon cutaneum . Chem. Pap. 71, 1471–1480 (2017). https://doi.org/10.1007/s11696-017-0141-8

Download citation

Keywords

  • Biofilm
  • Candida sp.
  • Trichosporon sp.
  • Rhamnolipid
  • Amphotericin B
  • Drugs interaction