Al-Fattani MA, Douglas LJ (2006) Biofilm matrix of Candida albicans and Candida tropicalis: chemical composition and role in drug resistance. J Med Microbiol 55(8):999–1008. doi:10.1099/jmm.0.46569-0
CAS
Article
Google Scholar
Andrews JM (2001) Determination of minimum inhibitory concentrations. J Antimicrob Chemother 48:5–16. doi:10.1093/jac/48.suppl_1.5
CAS
Article
Google Scholar
Banat IM, De Rienzo MAD, Quinn GA (2014) Microbial biofilms: biosurfactants as antibiofilm agents. Appl Microbiol Biotechnol 98(24):9915–9929. doi:10.1007/s00253-014-6169-6
CAS
Article
Google Scholar
Barchiesi F, Di Francesco LF, Compagnucci P, Arzeni D, Giacometti A, Scalise G (1998) In-vitro interaction of terbinafine with amphotericin B, fluconazole and itraconazole against clinical isolates of Candida albicans. J Antimicrob Chemother 41(1):59–65. doi:10.1093/Jac/41.1.59
CAS
Article
Google Scholar
Cordeiro RD, Serpa R, Alexandre CFU, Marques FJD, de Melo CVS, Franco JD, Evangelista AJD, de Camargo ZF, Brilhante RSN, Rocha MFG, Moreira JLB, Bandeira TDPG, Sidrim JJC (2015) Trichosporon inkin biofilms produce extracellular proteases and exhibit resistance to antifungals. J Med Microbiol 64:1277–1286. doi:10.1099/jmm.0.000159
CAS
Article
Google Scholar
d’Enfert C (2006) Biofilms and their role in the resistance of pathogenic Candida to antifungal agents. Curr Drug Targets 7(4):465–470. doi:10.2174/138945006776359458
Article
Google Scholar
Di Bonaventura G, Pompilio A, Picciani C, Iezzi M, D’Antonio D, Piccolomini R (2006) Biofilm formation by the emerging fungal pathogen Trichosporon asahii: development, architecture, and antifungal resistance. Antimicrob Agents Chemother 50(10):3269–3276. doi:10.1128/Aac.00556-06
Article
Google Scholar
Donlan RM, Costerton JW (2002) Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15(2):167–193. doi:10.1128/Cmr.15.2.167-193.2002
CAS
Article
Google Scholar
Franzot SP, Casadevall A (1997) Pneumocandin L-743,872 enhances the activities of amphotericin B and fluconazole against Cryptococcus neoformans in vitro. Antimicrob Agents Chemother 41(2):331–336
CAS
Google Scholar
Gilbert P, Maira-Litran T, McBain AJ, Rickard AH, Whyte FW (2002) The physiology and collective recalcitrance of microbial biofilm communities. Adv Microb Physiol 46:203–256. doi:10.1016/S0065-2911(02)46005-5
CAS
Article
Google Scholar
Girmenia C, Venditti M, Martino P (2003) Fluconazole in combination with flucytosine in the treatment of fluconazole-resistant Candida infections. Diagn Microbiol Infect Dis 46(3):227–231. doi:10.1016/s0732-8893(03)00064-6
CAS
Article
Google Scholar
Guo N, Wu XP, Yu L, Liu JB, Meng RZ, Jin J, Lu HJ, Wang XL, Yan SH, Deng XM (2009) In vitro and in vivo interactions between fluconazole and allicin against clinical isolates of fluconazole-resistant Candida albicans determined by alternative methods. FEMS Immunol Med Microbiol 58(2):193–201. doi:10.1111/j.1574-695X.2009.00620.x
Article
Google Scholar
Hoskova M, Jezdik R, Schreiberova O, Chudoba J, Sir M, Cejkova A, Masak J, Jirku V, Rezanka T (2015) Structural and physiochemical characterization of rhamnolipids produced by Acinetobacter calcoaceticus, Enterobacter asburiae and Pseudomonas aeruginosa in single strain and mixed cultures. J Biotechnol 193:45–51. doi:10.1016/j.jbiotec.2014.11.014
CAS
Article
Google Scholar
Hyldgaard M, Mygind T, Meyer RL (2012) Essential oils in food preservation: mode of action, synergies, and interactions with food matrix components. Front Microbiol 3:12. doi:10.3389/fmicb.2012.00012
Article
Google Scholar
Jiang LF, Shen C, Long XW, Zhang GL, Meng Q (2014) Rhamnolipids elicit the same cytotoxic sensitivity between cancer cell and normal cell by reducing surface tension of culture medium. Appl Microbiol Biotechnol 98(24):10187–10196. doi:10.1007/s00253-014-6065-0
CAS
Article
Google Scholar
Karashima R, Yamakami Y, Yamagata E, Tokimatsu I, Hiramatsu K, Nasu M (2002) Increased release of glucuronoxylomannan antigen and induced phenotypic changes in Trichosporon asahii by repeated passage in mice. J Med Microbiol 51(5):423–432. doi:10.1099/0022-1317-51-5-423
CAS
Article
Google Scholar
Kontoyiannis DP, Lewis RE (2004) Toward more effective antifungal therapy: the prospects of combination therapy. Br J Haematol 126(2):165–175. doi:10.1111/j.1365-2141.2004.05007.x
CAS
Article
Google Scholar
Kumar SN, Aravind SR, Sreelekha TT, Jacob J, Kumar BS (2015) Asarones from Acorus calamus in combination with azoles and amphotericin B: a novel synergistic combination to compete against human pathogenic Candida species in vitro. Appl Biochem Biotechnol 175(8):3683–3695. doi:10.1007/s12010-015-1537-y
CAS
Article
Google Scholar
Kvasnickova E, Matatkova O, Cejkova A, Masak J (2015) Evaluation of baicalein, chitosan and usnic acid effect on Candida parapsilosis and Candida krusei biofilm using a Cellavista device. J Microbiol Methods 118:106–112. doi:10.1016/j.mimet.2015.09.002
CAS
Article
Google Scholar
Lara HH, Romero-Urbina DG, Pierce C, Lopez-Ribot JL, Arellano-Jimenez MJ, Jose-Yacaman M (2015) Effect of silver nanoparticles on Candida albicans biofilms: an ultrastructural study. J Nanobiotechnol 13:91. doi:10.1186/s12951-015-0147-8
Article
Google Scholar
Leung CY, Chan YC, Samaranayake LP, Seneviratne CJ (2012) Biocide resistance of Candida and Escherichia coli biofilms is associated with higher antioxidative capacities. J Hosp Infect 81(2):79–86. doi:10.1016/j.jhin.2011.09.014
CAS
Article
Google Scholar
Li H, Lu Q, Wan Z, Zhang J (2010) In vitro combined activity of amphotericin B, caspofungin and voriconazole against clinical isolates of Trichosporon asahii. Int J Antimicrob Agents 35(6):550–552. doi:10.1016/j.ijantimicag.2010.01.013
CAS
Article
Google Scholar
Liao Y, Zhao H, Lu XL, Yang ST, Zhou JF, Yang RY (2015) Efficacy of ethanol against Trichosporon asahii biofilm in vitro. Med Mycol 53(4):396–404. doi:10.1093/mmy/myv006
CAS
Article
Google Scholar
Martinez LR, Casadevall A (2007) Cryptococcus neoformans biofilm formation depends on surface support and carbon source and reduces fungal cell susceptibility to heat, cold, and UV light. Appl Environ Microbiol 73(14):4592–4601. doi:10.1128/AEM.02506-06
CAS
Article
Google Scholar
Monteiro AS, Miranda TT, Lula I, Denadai AM, Sinisterra RD, Santoro MM, Santos VL (2011) Inhibition of Candida albicans CC biofilms formation in polystyrene plate surfaces by biosurfactant produced by Trichosporon montevideense CLOA72. Colloid Surf B Biointerfaces 84(2):467–476. doi:10.1016/j.colsurfb.2011.02.001
CAS
Article
Google Scholar
Nikolaev YA, Plakunov VK (2007) Biofilm—”City of microbes” or an analogue of multicellular organisms? Microbiology 76(2):125–138. doi:10.1134/S0026261707020014
CAS
Article
Google Scholar
Nunes JM, Bizerra FC, Ferreira RC, Colombo AL (2013) Molecular identification, antifungal susceptibility profile, and biofilm formation of clinical and environmental Rhodotorula species isolates. Antimicrob Agents Chemother 57(1):382–389. doi:10.1128/AAC.01647-12
Article
Google Scholar
Pires RH, Montanari LB, Martins CH, Zaia JE, Almeida AM, Matsumoto MT, Mendes-Giannini MJ (2011) Anticandidal efficacy of cinnamon oil against planktonic and biofilm cultures of Candida parapsilosis and Candida orthopsilosis. Mycopathologia 172(6):453–464. doi:10.1007/s11046-011-9448-0
CAS
Article
Google Scholar
Quan H, Cao YY, Xu Z, Zhao JX, Gao PH, Qin XF, Jiang YY (2006) Potent in vitro synergism of fluconazole and berberine chloride against clinical isolates of Candida albicans resistant to fluconazole. Antimicrob Agents Chemother 50(3):1096–1099. doi:10.1128/AAC.50.3.1096-1099.2006
CAS
Article
Google Scholar
Rezanka T, Kolouchova I, Cejkova A, Sigler K (2012) Natural products: strategic tools for modulation of biofilm formation. In: Atta-ur-Rahman F (ed) Studies in natural products chemistry, vol 38. Elsevier, Amsterdam, pp 269–303
Google Scholar
Robbins N, Uppuluri P, Nett J, Rajendran R, Ramage G, Lopez-Ribot JL, Andes D, Cowen LE (2011) Hsp90 governs dispersion and drug resistance of fungal biofilms. PLoS Pathog 7(9):e1002257. doi:10.1371/journal.ppat.1002257
CAS
Article
Google Scholar
Rodrigues L, Banat IM, Teixeira J, Oliveira R (2006) Biosurfactants: potential applications in medicine. J Antimicrob Chemother 57(4):609–618. doi:10.1093/Jac/Dkl024
CAS
Article
Google Scholar
Rosato A, Vitali C, Gallo D, Balenzano L, Mallamaci R (2008) The inhibition of Candida species by selected essential oils and their synergism with amphotericin B. Phytomedicine 15(8):635–638. doi:10.1016/j.phymed.2008.05.001
Article
Google Scholar
Samadi N, Abadian N, Ahmadkhaniha R, Amini F, Dalili D, Rastkari N, Safaripour E, Mohseni FA (2012) Structural characterization and surface activities of biogenic rhamnolipid surfactants from Pseudomonas aeruginosa isolate MN1 and synergistic effects against methicillin-resistant Staphylococcus aureus. Folia Microbiol 57(6):501–508. doi:10.1007/s12223-012-0164-z
CAS
Article
Google Scholar
Sanglard D, Odds FC (2002) Resistance of Candida species to antifungal agents: molecular mechanisms and clinical consequences. Lancet Infect Dis 2(2):73–85. doi:10.1016/S1473-3099(02)00181-0
CAS
Article
Google Scholar
Sardi JCO, Scorzoni L, Bernardi T, Fusco-Almeida AM, Giannini MJSM (2013) Candida species: current epidemiology, pathogenicity, biofilm formation, natural antifungal products and new therapeutic options. J Med Microbiol 62:10–24. doi:10.1099/Jmm.0.045054-0
CAS
Article
Google Scholar
Serena C, Pastor FJ, Gilgado F, Mayayo E, Guarro J (2005) Efficacy of micafungin in combination with other drugs in a murine model of disseminated trichosporonosis. Antimicrob Agents Chemother 49(2):497–502. doi:10.1128/Aac.49.2.497-502.2005
CAS
Article
Google Scholar
Sharma M, Manoharlal R, Negi AS, Prasad R (2010) Synergistic anticandidal activity of pure polyphenol curcumin I in combination with azoles and polyenes generates reactive oxygen species leading to apoptosis. FEMS Yeast Res 10(5):570–578. doi:10.1111/j.1567-1364.2010.00637.x
CAS
Google Scholar
Sharma G, Raturi K, Dang S, Gupta S, Gabrani R (2014) Combinatorial antimicrobial effect of curcumin with selected phytochemicals on Staphylococcus epidermidis. J Asian Nat Prod Res 16(5):535–541. doi:10.1080/10286020.2014.911289
CAS
Article
Google Scholar
Silva S, Negri M, Henriques M, Oliveira R, Williams DW, Azeredo J (2012) Candida glabrata, Candida parapsilosis and Candida tropicalis: biology, epidemiology, pathogenicity and antifungal resistance. FEMS Microbiol Rev 36(2):288–305. doi:10.1111/j.1574-6976.2011.00278.x
CAS
Article
Google Scholar
Singh N, Shetye GS, Zheng H, Sun J, Luk YY (2016) Chemical signals of synthetic disaccharide derivatives dominate rhamnolipids at controlling multiple bacterial activities. ChemBioChem 17(1):102–111. doi:10.1002/cbic.201500396
CAS
Article
Google Scholar
Sun W, Su J, Xu S, Yan D (2012) Trichosporon asahii causing nosocomial urinary tract infections in intensive care unit patients: genotypes, virulence factors and antifungal susceptibility testing. J Med Microbiol 61(Pt 12):1750–1757. doi:10.1099/jmm.0.049817-0
CAS
Article
Google Scholar
Sweeney MT, Zurenko GE (2003) In vitro activities of linezolid combined with other antimicrobial agents against staphylococci, enterococci, pneumococci, and selected gram-negative organisms. Antimicrob Agents Chemother 47(6):1902–1906. doi:10.1128/Aac.47.6.1902-1906.2003
CAS
Article
Google Scholar
Taha MO, Al-Bakri AG, Zalloum WA (2006) Discovery of potent inhibitors of pseudomonal quorum sensing via pharmacophore modeling and in silico screening. Bioorg Med Chem Lett 16(22):5902–5906. doi:10.1016/j.bmcl.2006.08.069
CAS
Article
Google Scholar
Vediyappan G, Rossignol T, d’Enfert C (2010) Interaction of Candida albicans biofilms with antifungals: transcriptional response and binding of antifungals to beta-glucans. Antimicrob Agents Chemother 54(5):2096–2111. doi:10.1128/Aac.01638-09
CAS
Article
Google Scholar
Wei GX, Xu X, Wu CD (2011) In vitro synergism between berberine and miconazole against planktonic and biofilm Candida cultures. Arch Oral Biol 56(6):565–572. doi:10.1016/j.archoralbio.2010.11.021
CAS
Article
Google Scholar
Yu VL, Zuravleff JJ, Bornholm J, Archer G (1984) In vitro synergy testing of triple antibiotic combinations against Staphylococcus epidermidis isolates from patients with endocarditis. J Antimicrob Chemother 14(4):359–366. doi:10.1093/Jac/14.4.359
CAS
Article
Google Scholar
Zhou Y, Wang G, Li Y, Liu Y, Song Y, Zheng W, Zhang N, Hu X, Yan S, Jia J (2012) In vitro interactions between aspirin and amphotericin B against planktonic cells and biofilm cells of Candida albicans and C. parapsilosis. Antimicrob Agents Chemother 56(6):3250–3260. doi:10.1128/AAC.06082-11
CAS
Article
Google Scholar
Ziccardi M, Souza LO, Gandra RM, Galdino AC, Baptista AR, Nunes AP, Ribeiro MA, Branquinha MH, Santos AL (2015) Candida parapsilosis (sensu lato) isolated from hospitals located in the Southeast of Brazil: species distribution, antifungal susceptibility and virulence attributes. Int J Med Microbiol 305(8):848–859. doi:10.1016/j.ijmm.2015.08.003
CAS
Article
Google Scholar