Advertisement

Chemical Papers

, Volume 71, Issue 8, pp 1445–1451 | Cite as

Green synthesis of ultrafine super-paramagnetic magnetite nano-fluid: a magnetic and dielectric study

  • Ali BahadurEmail author
  • Shahid Iqbal
  • Aamer Saeed
  • Muhammad Imran Bashir
  • Muhammad ShoaibEmail author
  • Muhammad Waqas
  • Ghulam Shabir
  • Abdul Jabbar
Original Paper

Abstract

In this communication, environmental friendly and biocompatible ultrafine super-paramagnetic magnetite nanoparticles (USPMNs) ferro-fluid was prepared by modifying co-precipitation green itinerary under optimized conditions. Phase pattern of USPMNs was confirmed by X-ray diffraction (XRD). Particle size of USPMNs was also estimated using the Scherrer’s formula which turned out to be almost 12 nm, confirmed by SEM image. The magnetic study of USPMNs confirmed the super-paramagnetic nature with zero coercivity and remanence. The spin glass behavior on the surface of these USPMNs below 40 K was attributed for the exchange bias effects during field cooling process as confirmed by M-T graph. The dielectric constant and dissipation factor followed the same decaying dispersion trend at room temperature. The low temperature effects on dielectric constant and dissipation factor were also studied at frequencies of 10, 20 and 30 kHz.

Graphical Abstract

Keywords

Dielectric constant Co-precipitation Exchange bias effects Ultrafine super-paramagnetic Magnetite 

References

  1. Ali K, Sarfraz A, Mirza IM, Bahadur A, Iqbal S, ul Haq A (2015) Preparation of superparamagnetic maghemite (γ-Fe2O3) nanoparticles by wet chemical route and investigation of their magnetic and dielectric properties. Curr Appl Phys 15:925–929. doi: 10.1016/j.cap.2015.04.030 CrossRefGoogle Scholar
  2. Aliahmad M, Nasiri Moghaddam N (2013) Synthesis of maghemite (γ-Fe2O3) nanoparticles by thermal-decomposition of magnetite (Fe3O4) nanoparticles. Mater Sci Pol 31:264–268. doi: 10.2478/s13536-012-0100-6 CrossRefGoogle Scholar
  3. Caetano BL, Guibert C, Fini R, Fresnais J, Pulcinelli SH, Menager C, Santilli CV (2016) Magnetic hyperthermia-induced drug release from ureasil-PEO-[gamma]-Fe2O3 nanocomposites. RSC Adv 6:63291–63295. doi: 10.1039/C6RA08127D CrossRefGoogle Scholar
  4. Cano M, Nunez-Lozano R, Dumont Y, Larpent C, de la Cueva-Mendez G (2016) Synthesis and characterization of multifunctional superparamagnetic iron oxide nanoparticles (SPION)/C60 nanocomposites assembled by fullerene-amine click chemistry. RSC Adv 6:70374–70382. doi: 10.1039/C6RA14047E CrossRefGoogle Scholar
  5. Chattopadhyay S, Kaur A, Jain S, Sabharwal PK, Singh H (2016) Polymer functionalized magnetic nanoconstructs for immunomagnetic separation of analytes. RSC Adv 6:66505–66515. doi: 10.1039/C6RA14236B CrossRefGoogle Scholar
  6. Davarpanah M, Ahmadpour A, Bastami TR (2015) Preparation and characterization of anion exchange resin decorated with magnetite nanoparticles for removal of p-toluic acid from aqueous solution. J Magn Magn Mater 375:177–183. doi: 10.1016/j.jmmm.2014.09.065 CrossRefGoogle Scholar
  7. El Ghandoor H, Zidan H, Khalil MM, Ismail M (2012) Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. J Magn Magn Mater 7:5734–5745. doi: 10.1016/j.jmmm.2014.09.065 Google Scholar
  8. Faivre D, Bennet M (2016) Materials science: magnetic nanoparticles line up. Nature 535:235–236. doi: 10.1038/535235a CrossRefGoogle Scholar
  9. Fuller RO, Goh B-M, Koutsantonis GA, Loedolff MJ, Saunders M, Woodward RC (2016) A simple procedure for the production of large ferromagnetic cobalt nanoparticles. Dalton Trans 45:11983–11989. doi: 10.1039/C6DT01935H CrossRefGoogle Scholar
  10. Huang H, Wang X, Ge H, Xu M (2016) Multifunctional magnetic cellulose surface-imprinted microspheres for highly selective adsorption of artesunat. ACS Sustain Chem Eng 4:3334–3343. doi: 10.1021/acssuschemeng.6b00386 CrossRefGoogle Scholar
  11. Hurley KR, Ring HL, Kang H, Klein ND, Haynes CL (2015) Characterization of magnetic nanoparticles in biological matrices. Anal Chem 87:11611–11619. doi: 10.1021/acs.analchem.5b02229 CrossRefGoogle Scholar
  12. Iqubal MA, Sharma R, Kamaluddin (2016) Surface interaction of ribonucleic acid constituents with spinel ferrite nanoparticles: a prebiotic chemistry experiment. RSC Adv 6:68574–68583. doi: 10.1039/C6RA12247G CrossRefGoogle Scholar
  13. Ivanov YP, Chuvilin A, Lopatin S, Kosel J (2016) Modulated magnetic nanowires for controlling domain wall motion: toward 3D magnetic memories. ACS Nano 10:5326–5332. doi: 10.1021/acsnano.6b01337 CrossRefGoogle Scholar
  14. Kant R, Kumar N, Dutta V (2016) Fabrication of micro/nanostructured α-Fe2O3 hollow spheres: effect of electric field on the morphological, magnetic and photocatalytic properties. RSC Adv 6:65789–65798. doi: 10.1039/C6RA14412H CrossRefGoogle Scholar
  15. Kim YI, Kim D, Lee CS (2003) Synthesis and characterization of CoFe2O4 magnetic nanoparticles prepared by temperature-controlled coprecipitation method. Phys B Condens Matter 337: 42–51. doi:S0921-4526(03)00322-3Google Scholar
  16. Li F, Zhi D, Luo Y, Zhang J, Nan X, Zhang Y, Zhou W, Qiu B, Wen L, Liang G (2016) Core/shell Fe3O4/Gd2O3 nanocubes as T1–T2 dual modal MRI contrast agents. Nanoscale 8:12826–12833. doi: 10.1039/C6NR02620F CrossRefGoogle Scholar
  17. Liang Y, Bai P, Zhou J, Wang T, Luo B, Zheng S (2016) An efficient precursor to synthesize various FeS2 nanostructures via a simple hydrothermal synthesis method. CrystEngComm 18:6262–6271. doi: 10.1039/C6CE01203E CrossRefGoogle Scholar
  18. Manukyan S, Schneider M (2016) Experimental investigation of wetting with magnetic fluids. Langmuir 32:5135–5140. doi: 10.1021/acs.langmuir.5b04737 CrossRefGoogle Scholar
  19. Popa EG, Santo VE, Rodrigues MT, Gomes ME (2016) Magnetically-responsive hydrogels for modulation of chondrogenic commitment of human adipose-derived stem cells. Polymers 8: 28. doi:10.3390/polym8020028Google Scholar
  20. Sadeghi M, Safari J, Zarnegar Z (2016) Synthesis of 2-aminothiazoles from methylcarbonyl compounds using a Fe3O4 nanoparticle-N-halo reagent catalytic system. RSC Adv 6:64749–64755. doi: 10.1039/C6RA11175K CrossRefGoogle Scholar
  21. Sarveena D, Muraca PM, Zelis Y, Javed N, Ahmad JM, Vargas O, Moscoso-Londono M, Knobel M Singh, Sharma SK (2016) Surface and interface interplay on the oxidizing temperature of iron oxide and Au-iron oxide core-shell nanoparticles. RSC Adv 6:70394–70404. doi: 10.1039/C6RA15610J CrossRefGoogle Scholar
  22. Seo JY, Praveenkumar R, Kim B, Seo J-C, Park J-Y, Na J-G, Jeon SG, Park SB, Lee K, Oh Y-K (2016) Downstream integration of microalgae harvesting and cell disruption by means of cationic surfactant-decorated Fe3O4 nanoparticles. Green Chem 18:3981–3989. doi: 10.1039/C6GC00904B CrossRefGoogle Scholar
  23. Sungsuwan S, Yin Z, Huang X (2015) Lipopeptide-coated iron oxide nanoparticles as potential glycoconjugate-based synthetic anticancer vaccines. ACS Appl Mater Interfaces 7:17535–17544. doi: 10.1021/acsami.5b05497 CrossRefGoogle Scholar
  24. Tanhaei B, Ayati A, Lahtinen M, Sillanpää M (2015) Preparation and characterization of a novel chitosan/Al2O3/magnetite nanoparticles composite adsorbent for kinetic, thermodynamic and isotherm studies of methyl orange adsorption. Chem Eng J 259:1–10. doi: 10.1016/j.cej.2014.07.109 CrossRefGoogle Scholar
  25. Wang Z, Geng D, Zhang Y, Zhang Z (2008) Morphology, structure and magnetic properties of single-crystal Mn3O4 nanorods. J Cryst Growth 310:4148–4151. doi: 10.1016/j.jcrysgro.2008.06.025 CrossRefGoogle Scholar
  26. Xu H-L et al (2016) Glioma-targeted superparamagnetic iron oxide nanoparticles as drug-carrying vehicles for theranostic effects. Nanoscale. 8:14222–14236. doi: 10.1039/C6NR02448C CrossRefGoogle Scholar
  27. Zhang L, Li Y, Yu JC, Chan KM (2016) Redox-responsive controlled DNA transfection and gene silencing based on polymer-conjugated magnetic nanoparticles. RSC Adv 6:72155–72164. doi: 10.1039/C6RA16578H CrossRefGoogle Scholar
  28. Zolfigol MA, Ayazi-Nasrabadi R (2016) Synthesis of the first magnetic nanoparticles with a thiourea dioxide-based sulfonic acid tag: application in the one-pot synthesis of 1,1,3-tri(1H-indol-3-yl) alkanes under mild and green conditions. RSC Adv 6:69595–69604. doi: 10.1039/C6RA11620E CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2017

Authors and Affiliations

  • Ali Bahadur
    • 1
    Email author
  • Shahid Iqbal
    • 2
  • Aamer Saeed
    • 1
  • Muhammad Imran Bashir
    • 3
  • Muhammad Shoaib
    • 1
    Email author
  • Muhammad Waqas
    • 4
  • Ghulam Shabir
    • 1
  • Abdul Jabbar
    • 5
  1. 1.Department of ChemistryQuaid-i-Azam UniversityIslamabadPakistan
  2. 2.School of Chemistry and Chemical EngineeringUniversity of Chinese Academy of SciencesBeijingPeople’s Republic of China
  3. 3.Department of PhysicsQuaid-i-Azam UniversityIslamabadPakistan
  4. 4.Key Laboratory of Multi-Phase Complex SystemInstitute of Process Engineering, Chinese Academy of SciencesBeijingChina
  5. 5.Department of ChemistryAllama Iqbal Open University IslamabadIslamabadPakistan

Personalised recommendations