Skip to main content

Swelling behaviors of poly(dodecyl methacrylate-co-methyl eugenol) and poly(dodecyl methacrylate-co-methyl chavicol) gels in essential oil components

Abstract

Poly(dodecylmethacrylate-co-methyleugenol) P(DDMA-co-Meu) and poly(dodecylmethacrylate-co-methylchavicol) P(DDMA-co-Mch) gels were synthesized in ethanol using free radical cross-linking polymerization method at 60 °C for 24 h in the presence of azobisisobutyronitrile (AIBN) and triethylene glycol dimethacrylate (TEGDMA) as initiator and cross-linker, respectively. Scanning electron microscopy (SEM) and Fourier transform infrared spectroscopy (FTIR) were used to characterize the gels. These gels were used to investigate swelling behaviors in linalool and methyl eugenol, in essential oil mixture of phenyl propanoid and terpenoid, and also in various solvents. While the equilibrium swelling values (ESV) of both gels were higher in linalool than in methyl eugenol, the result was vice versa in the case of essential oil mixture. ESVs of both gels were also obtained in various solvents with different functional groups and the highest ESV of both gels were obtained in toluene, and the lowest ESV of P(DDMA-co-Meu) and P(DDMA-co-Mch) was in methanol and in ethylene glycol, respectively. While P(DDMA-co-Meu) is sensitive to carbon number change in alcohol, P(DDMA-co-Mch) is less sensitive. In the case of esters, increase of carbon number in functional group causes a more significant change in ESV than an increase of carbon number in aliphatic chain. Experimental results were correlated by the first-order and second-order models. The second-order model was more suitable than the other. While P(DDMA-co-Meu) gel swelled in linalool exhibits a Fickian diffusion character, the diffusion mechanism of the gel in methyl eugenol is a non-Fickian one. In the case of P(DDMA-co-Mch), the result is vice versa.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

References

  1. Afroze F, Nies E, Berghmans H (2000) Phase transitions in the system poly(N-isopropylacrylamide)/water and swelling behavior of the corresponding networks. J Mol Struct 554:55–68. doi:10.1016/S0022-2860(00)00559-7

    CAS  Article  Google Scholar 

  2. AlAbbasy DW, Pathare N, Al-Sabahi JN, Khan SA (2015) Chemical composition and antibacterial activity of essential oil isolated from Omani basil (Ocimumbasilicum Linn.). Asian Pac J Trop Dis 5(8):645–649. doi:10.1016/S2222-1808(15)60905-7

    CAS  Article  Google Scholar 

  3. Aşçi YS, Hasdemir IM (2008) Removal of some carboxylic acids from aqueous solutions by hydrogels. J Chem Eng Data 53:2351–2355. doi:10.1021/je800230t

    Article  Google Scholar 

  4. Bellili A, David N, Vandame B, Wang QX, Goutille Y, Richaud E (2012) Diffusion and solubility of mineral oils through ethylene-vinyl acetate copolymer. Polym Testing 31:236–247. doi:10.1016/j.polymertesting.2011.11.003

    CAS  Article  Google Scholar 

  5. Bozin B, Mimica-Dukic N, Simin N, Anackov G (2006) Characterization of the volatile composition of essential oils of some lamiaceae spices and the antimicrobial and antioxidant activities of the entire oils. J Agric Food Chem 54:1822–1828. doi:10.1021/jf051922u

    CAS  Article  Google Scholar 

  6. Cai WS, Gupta RB (2001) Poly(N-ethylacrylamide) hydrogels for lignin separation. Ind Eng Chem Res 40:3406–3412. doi:10.1021/ie010015l

    CAS  Article  Google Scholar 

  7. Caykara T, Doğmuş M (2004) The effect of solvent composition on swelling and shrinking properties of poly(acrylamide-co-itaconic acid) hydrogels. Eur Polymer J 40:2605–2609. doi:10.1016/j.eurpolymj.2004.06.024

    CAS  Article  Google Scholar 

  8. Caykara T, Bulut M, Dilsiz N, Akyüz Y (2006) Macroporouspoly(acrylamide) hydrogels: swelling and shrinking behaviors. J Macromol Sci. Part A 43:889–897. doi:10.1080/10601320600653699

    CAS  Article  Google Scholar 

  9. Chapman RF, Bernays EA, Simpson SJ (1981) Attraction and repulsion of the Aphid, Cavariella Aegopodii, by plant odors. J Chem Ecol 7(5):881–888. doi:10.1007/BF00992385

    CAS  Article  Google Scholar 

  10. Chern JM, Lee WF, Hsieh MY (2004) Absorption isotherm of caffeine and release kinetics from swollen NIPAAm hydrogels: experiments and modeling. Ind Eng Chem Res 43:6150–6156. doi:10.1021/ie049616d

    CAS  Article  Google Scholar 

  11. Chowdhry BZ, Ryall JP, Dines TJ, Mendham AP (2015) Infrared and Raman spectroscopy of eugenol, isoeugenol, and methyl eugenol: conformational analysis and vibrational assignments from density functional theory calculations of the anharmonic fundamentals. J Phys. Chem. A 119:11280–11292. doi:10.1021/acs.jpca.5b07607

    CAS  Article  Google Scholar 

  12. El-Hamshary H (2007) Synthesis and water sorption studies of pH sensitive poly(acrylamide-co-itaconic acid) hydrogels. Eur Polym J 43:4830–4838. doi:10.1016/j.eurpolymj.2007.08.018

    CAS  Article  Google Scholar 

  13. Hirashima Y, Suzuki A (2007) Formation and destruction of hydrogen bonds in gels and in aqueous solutions of N-isopropylacrylamide and sodium acrylate observed by ATR-FTIR spectroscopy. J Colloid Interface Sci 312:14–20. doi:10.1016/j.jcis.2006.07.046

    CAS  Article  Google Scholar 

  14. Javanmardi J, Khalighi A, Kashi A, Bais, HP, Vivanco, J. M. Chemical characterization of Basil (Ocimumbasilicum L.) found in local accessions and used in traditional medicines in Iran. J Agric and Food Chem 50:5878–5883. doi:10.1021/jf020487q

  15. Karadağ E, Saraydın D, Güven O (2001) Radiation induced superabsorbent hydrogels. acrylamide/itaconic acid copolymers. Macromol Mater Eng 286:34–42. doi:10.1002/1439-2054(20010101)286:1<34:AID-MAME34>3.0.CO;2-J

    Article  Google Scholar 

  16. Katime I, Velada JL, Novoa R, Díaz de Apodaca E, Puig J, Mendizabal E (1996) Swelling kinetics of poly(acrylamide)/poly(mono-n-alkyl itaconates) hydrogels. Polym Int 40:281–286. doi:10.1002/(SICI)1097-0126(199608)40:4<281:AID-PI555>3.0.CO;2-H

    CAS  Article  Google Scholar 

  17. Khare AR, Peppas NA (1995) Swelling/deswelling of anionic copolymer gels. Biomaterials 16:559–567. doi:10.1016/0142-9612(95)91129-M

    CAS  Article  Google Scholar 

  18. Kim BS, La Flamme K, Peppas NA (2003) Dynamic swelling behavior of pH-sensitive anionic hydrogels used for protein delivery. J Appl Polym Sci 89:1606–1613. doi:10.1002/app.12337

    CAS  Article  Google Scholar 

  19. Lazár M, Hrčková L, Borsig E (2002) Polymerization of n-dodecyl methacrylateinto high conversion. J Macromol Sci, Part A. Pure Appl Chem 39(5):365–377. doi:10.1081/MA-120003957

    Article  Google Scholar 

  20. Lee WF, Huang YL (2000) Thermoreversible hydrogels XIV. Synthesis and swelling behavior of the (N-isopropylacrylamide-co-2-hydroxyethyl methacrylate) copolymeric hydrogels. J Appl Polym Sci 77:1769–1781. doi:10.1002/1097-4628(20000822)77:8<1760:AID-APP13>3.0.CO;2-J

    CAS  Article  Google Scholar 

  21. Mamytbekov G, Bouchal K, Ilavsky M (1999) Phase transition in swollen gels 26. Effect of charge concentration on temperature dependence of swelling and mechanical behavior of poly(n-vinylcaprolactam) gels. Eur Polymer J 35:1925–1933. doi:10.1016/S0014-3057(99)00010-5

    CAS  Article  Google Scholar 

  22. Mohan YM, Murthy PSK, Rao KM, Sreeramulu J, Raju KM (2005) Swelling behavior and diffusion studies of high-water-retaining acrylamide/potassium methacrylate hydrogels. J Appl Polym Sci 96:1153–1164. doi:10.1002/app.21565

    CAS  Article  Google Scholar 

  23. Ngoh SP, Choo LEW, Pang FY, Huang Y, Kini MR, Ho SH (1998) Insecticidal and repellent properties of nine volatile constituents of essential oils against the American Cockroach, Periplanetaamericana (L.). Pest Manag Sci 54:261–268. doi:10.1002/(SICI)1096-9063(1998110)54:3<261:AID-PS794>3.0.CO;2-C

    CAS  Article  Google Scholar 

  24. Oh SY, Bae YC (2013) Molecular thermodynamic analysis for reentrant and reentrant-convex type swelling behaviors of thermo-sensitive in mixed solvents. Polymer 54:2308–2314. doi:10.1016/j.polymer.2013.03.003

    CAS  Article  Google Scholar 

  25. Ozmen MM, Okay O (2003) Swelling behavior of strong polyelectrolyte poly(N-t-butylacrylamide-co-acrylamide) hydrogels. Eur Polymer J 39:877–886. doi:10.1016/s0014-3057(02)00356-7

    Article  Google Scholar 

  26. Ozturk V, Okay O (2002) Temperature sensitive poly(N-t-butylacrylamide-co-acrylamide) hydrogels: synthesis and swelling behavior. Polymer 43:5017–5026. doi:10.1016/S0032-3861(02)00357-9

    CAS  Article  Google Scholar 

  27. Park SY, Yang JH, Yuk SH, Jhon MS (1999) Temperature-induced phase transition of poly(N-n-propylacrylamide-co-butylmethacrylate-co-N, N-diethylaminoethyl methacrylate). J Polym Sci, Part B: Polym Phys 37:1407–1411. doi:10.1002/(SICI)1099-0488(19990701)37:13<1407:AID-POLB6>3.0.CO;2-S

    CAS  Article  Google Scholar 

  28. Pascual-Villalobos MJ, Ballesta-Acosta MC (2003) Chemical variation in an Ocimumbasilicum germplasm collection and activity of the essential oils on Callosobruchusmaculates. Biochem Syst Ecol 31(7):673–679. doi:10.1016/S0305-1978(02)00183-7

    CAS  Article  Google Scholar 

  29. Politeo O, Jukic M, Milos M (2007) Chemical composition and antioxidant capacity of free volatileaglycones from basil (Ocimumbasilicum L.) compared with its essential oil. Food Chem 101:379–385. doi:10.1016/j.foodchem.2006.01.045

    CAS  Article  Google Scholar 

  30. Pourjavadi A, Doulabi M (2014) Preparation and evaluation of a polymeric gel containing ionic liquid-functionalized MWCNTs as a novel class of organic solvent absorbent. J Polym Sci, Part A: Polym Chem 52:3166–3172. doi:10.1002/pola.27372

    CAS  Article  Google Scholar 

  31. Sevgili LM, Toprak S, Çavuş S (2015) Swelling of N-vinylcaprolactam–dodecyl methacrylate gel in heptane + toluene mixtures. Chem Pap 69(5):668–678. doi:10.1515/chempap-2015-0073

    CAS  Article  Google Scholar 

  32. Shah S, Pal A, Gude R, Devi S (2010) Synthesis and characterization of thermo-responsive copolymeric nanoparticles of poly(methyl methacrylate-co-N-vinylcaprolactam). Eur Polymer J 46(5):958–967. doi:10.1016/j.eurpolymj.2010.01.005

    CAS  Article  Google Scholar 

  33. Sheikh N, Jalili L, Anvari F (2010) A study on the swelling behavior of poly(acrylic acid) hydrogels obtained by electron beam crosslinking. Radiat Phys Chem 79:735–739. doi:10.1016/j.radphyschem.2009.12.013

    CAS  Article  Google Scholar 

  34. Taijima H, Yoshika Y, Yamagiwa K (2011) Experimental study of swelling and shrinking kinetics of spherical poly (N,N-diethylacrylamide) gel with continuous phase transition. Polym 52:732–738. doi:10.1016/j.polymer.2010.12.029

    CAS  Article  Google Scholar 

  35. Tomašek L, Jukić A, Janović Z (2005) Copolymerization of methyl methacrylate and dodecyl methacrylate initiated by bifunctional peroxide. Acta ChimicaSlovenica 52:224–229

    Google Scholar 

  36. Vidović E, Sarić K, Janović Z (2002) Copolymerization of styrene with dodecyl methacrylate and octadecyl methacrylate. Croat Chem Acta 75(3):769–782

    Google Scholar 

  37. Wang LH, Sung WC (2011) Rapid evaluation and quantitative analysis of eugenol derivatives in essential oils and cosmetic formulations on human skin using attenuated total reflectance—infraredspectroscopy. Spectroscopy 26:43–52. doi:10.3233/SPE-2011-0526

    Article  Google Scholar 

  38. Xinming L, Yingde C (2008) Study on synthesis and chloramphenicol release of poly(2-hydroxyethylmethacrylate-co-acrylamide) hydrogels. Chin J Chem Eng 16(4):640–645. doi:10.1016/S1004-9541(08)60134-2

    Article  Google Scholar 

  39. Yasumoto N, Hata Y, Satoh M (2004) Solvent-specific swelling behavior of poly(allyamine) gel. Polym Int 53:766–771. doi:10.1002/pi.1443

    CAS  Article  Google Scholar 

  40. Zhao J, Xiao C, Xu N, Ma X (2012) Preparation and properties of poly(butyl methacrylate/lauryl methacrylate) and its blend fiber. Polym Bull 69:733–746. doi:10.1007/s00289-012-0766-2

    CAS  Article  Google Scholar 

  41. Zheljazkov VD, Callahan A, Cantrell CL (2008) Yield and oil composition of 38 Basil (Ocimumbasilicum L.) accessions grown in Mississippi. J Agric Food Chem 56:241–245. doi:10.1021/jf072447y

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding authors

Correspondence to Lutfullah M. Sevgili or Selva Çavuş.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 696 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Sevgili, L.M., Gök, A., Kayman, Ü. et al. Swelling behaviors of poly(dodecyl methacrylate-co-methyl eugenol) and poly(dodecyl methacrylate-co-methyl chavicol) gels in essential oil components. Chem. Pap. 71, 1399–1408 (2017). https://doi.org/10.1007/s11696-017-0130-y

Download citation

Keywords

  • Linalool
  • Methyl eugenol
  • Dodecyl methacrylate
  • Swelling
  • Diffusion
  • Phenyl propanoid
  • Terpenoid