Electrochemical and mechanical stability of ion-exchange membranes in alkaline solution

Abstract

This paper focuses on the transport and mechanical properties of ion-exchange membranes (IEMs) in an aqueous NaOH solution. Heterogeneous IEMs based on styrene–divinylbenzene and polyethylene reinforced with polyester (PES) or polyamide (PAD) fabric were studied. The IEMs were exposed to a 5% NaOH solution for 30 and 90 days and the changes in electrochemical resistance, transport number and permselectivity were evaluated. Moreover, the structure of the IEMs was observed after exposure and their mechanical properties were evaluated. The results show that NaOH solution has the most damaging effect, especially to PES cloth and the membrane as whole, mainly due to dimensional changes. Furthermore, changes in electrochemical resistance were observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Dammak L, Larchet C, Grande D (2009) Ageing of ion-exchange membranes in oxidant solutions. Sep Purif Technol 69(1):43–47. doi:10.1016/j.seppur.2009.06.016

    CAS  Article  Google Scholar 

  2. Demina OA, Demin AV, Gnusin NP, Zabolotskii VI (2010) Effect of an aprotic solvent on the properties and structure of ion-exchange membranes. Polymer Sci Ser A 52(12):1270–1282. doi:10.1134/S0965545X10120059

    Article  Google Scholar 

  3. Garcia-Vasquez W, Ghalloussi R, Dammak L, Larchet C, Nikonenko V, Grande D (2014) Structure and properties of heterogeneous and homogeneous ion-exchange membranes subjected to ageing in sodium hypochlorite. J Membr Sci 452:104–116. doi:10.1016/j.memsci.2013.10.035

    CAS  Article  Google Scholar 

  4. Ghalloussi R, Garcia-Vasquez W, Bellakhal N, Larchet C, Dammak L, Huguet P, Grande D (2011) Ageing of ion-exchange membranes used in electrodialysis: Investigation of static parameters, electrolytepermeability and tensile strength. Sep Purif Technol 80:270–275. doi:10.1016/j.seppur.2011.05.005

    CAS  Article  Google Scholar 

  5. Ghalloussi R, Garcia-Vasquez W, Chaabane L, Dammak L, Larchet C, Deabate SV, Nevakshenova E, Nikonenko V, Grande D (2013) Ageing of ion-exchange membranes in electrodialysis: A structural andphysicochemical investigation. J Membr Sci 436:68–78. doi:10.1016/j.memsci.2013.02.011

    CAS  Article  Google Scholar 

  6. Hong JG, Zhang B, Glabman S, Uzal N, Dou X, Zhang H et al (2015) Potential ion exchange membranes and system performance in reverse electrodialysis for power generation: a review. J Membr Sci 486:71–88. doi:10.1016/j.memsci.2015.02.039

    CAS  Article  Google Scholar 

  7. Kaláb J, Palatý Z (2012) Electrodialysis of oxalic acid: batch process modeling. Chem Pap 66(12):1118–1123. doi:10.2478/s11696-012-0232-5

    Article  Google Scholar 

  8. Káňavová N, Machuča L, Tvrzník D (2014) Determination of limiting current density for different electrodialysis modules. Chem Pap 68(3):324–329. doi:10.2478/s11696-013-0456-z

    Google Scholar 

  9. Kneifel K, Hattenbach K (1980) Properties and long-term behavior of ion exchange membranes. Desalination 34(1–2):77–95. doi:10.1016/S0011-9164(00)88582-3

    CAS  Article  Google Scholar 

  10. Lee H-J, Park J-S, Kang M-S, Moon S-H (2003) Effects of silica sol on ion exchange membranes: electrochemical characterization of anion exchange membranes in electrodialysis of silica sol containing-solutions. Korean J Chem Eng 20(5):889–895. doi:10.1007/BF02697294

    CAS  Article  Google Scholar 

  11. Lucas N, Bienaime C, Belloy C, Queneudec M, Silvestre F, Nava-Saucedo J-E (2008) Polymer biodegradation: mechanisms and estimation techniques—a review. Chemosphere 73(4):429–442. doi:10.1016/j.chemosphere.2008.06.064

    CAS  Article  Google Scholar 

  12. Mashiur R (2012) Degradation of polyesters in medical applications. In: Saleh HED (ed) Polyester. InTech. doi:10.5772/47765

  13. Mleziva J, Šňupárek J (2000) Polymery: výroba, struktura, vlastnosti a použití (2. přeprac. vyd.). Praha: Sobotáles

  14. Pupkevich V, Glibin V, Karamanev D (2007) The effect of ferric ions on the conductivity of various types of polymer cation exchange membranes. J Solid State Electrochem 11(10):1429–1434. doi:10.1007/s10008-007-0306-4

    CAS  Article  Google Scholar 

  15. Sata T, Tsujimoto M, Yamaguchi T, Matsusaki K (1996) Change of anion exchange membranes in an aqueous sodium hydroxide solution at high temperature. J Membr Sci 112(2):161–170. doi:10.1016/0376-7388(95)00292-8

    CAS  Article  Google Scholar 

  16. Shishkina SV, Zhelonkina EA, Kononova TV (2013) Effect of chromium compounds on the properties of ion-exchange membranes. Pet Chem 53(7):494–499. doi:10.1134/S0965544113070165

    CAS  Article  Google Scholar 

  17. Smith M, March J (2007) March’s advanced organic chemistry: reactions, mechanisms, and structure, 6th edn. John Wiley, Hoboken

    Google Scholar 

  18. Stránská E, Neděla D, Válek R, Křivčík J (2015) Optimization of preparation of heterogeneous cation exchange membranes using different particle size distributions of ion exchange resins. Chemické Listy 109:701–709

    Google Scholar 

Download references

Acknowledgements

The work was carried out within the framework of the project No. LO1418 “Progressive development of Membrane Innovation Centre” supported by the program NPU I, Ministry of Education Youth and Sports of the Czech Republic, using the infrastructure Membrane Innovation Centre.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Pavel Bulejko.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary data associated with this article (xxxxxx) can be found in the online version of this paper (DOI: xxxxxxxxxx).

Fig. S1: Stress–strain curves of CM-PES (A) and CM-PAD (B) (DOCX 498 kb)

Fig. S2: Stress–strain curves of AMs (DOCX 128 kb)

Table S1: Basic parameters of reinforcing fabrics (DOCX 15 kb)

11696_2016_122_MOESM4_ESM.docx

Table S2: Tensile strength of reinforcing cloths related to cross-section of specimen (0.08 mm × 10 mm, σM1) and real cross-section of fibers (σM2) and elongation (ε) (DOCX 14 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bulejko, P., Stránská, E. & Weinertová, K. Electrochemical and mechanical stability of ion-exchange membranes in alkaline solution. Chem. Pap. 71, 1303–1309 (2017). https://doi.org/10.1007/s11696-016-0122-3

Download citation

Keywords

  • Ion-exchange membrane
  • Electrochemical properties
  • Mechanical properties
  • Sodium hydroxide