New microbial-friendly polyaniline nanoparticles on the base of nitrilotriacetic acid: comparison with PANI prepared by standard techniques

Abstract

This paper describes the influence of polyaniline (PANI) nanoparticles prepared in the presence of the nitrilotriacetic acid (NTA) in comparison with PANI prepared by standard techniques, on mixed microbial cultures in the form of a biological extract from soil and activated sludge and partially digested sludge, both sourced from a municipal wastewater treatment plant. The presence of PANI prepared by standard techniques in aqueous environment has a negative effect on the activity of mixed microbial cultures in the form of activated sludge, digested sludge (anaerobic conditions), and natural soil. According to biological oxygen demand (BOD) values—respirometric test, the slight inhibiting effect of nanoparticles is attributed to impurities and oligomers from aniline polymerization. The use of NTA in the production of PANI, resulted in nanotubes with channels through which NTA is incorporated into the structure. A sample thus obtained shows higher values of BOD, which is associated with the fact that NTA is released from PANI nanotube channels followed by its biodegradation.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  1. Abdolahi A, Hamzah E, Ibrahim Z, Hashim S (2012) Synthesis of uniform polyaniline nanofibers through interfacial polymerization. Materials 5(8):1487–1494. doi:10.3390/ma5081487

    CAS  Article  Google Scholar 

  2. Araujo PLB, Ferreira C, Araujo FS (2011) Biodegradable conductive composites of poly(3-hydroxybutyrate) and polyaniline nanofibers: preparation, characterization and radiolytic effects. Express Polym Lett 5(1):12–22. doi:10.3144/expresspolymlett.2011.3

    CAS  Article  Google Scholar 

  3. Arrambide G, Barrio DA, Etcheverry SB, Gambino D, Baran EJ (2010) Spectroscopic behavior and biological activity of K2[VO(O2)NTA]·2H2O. Biol Trace Elem Res 136(2):241–248. doi:10.1007/s12011-009-8538-z

    CAS  Article  Google Scholar 

  4. Bhadra S, Khastgir D (2008) Determination of crystal structure of polyaniline and substituted polyanilines through powder X-ray diffraction analysis. Polym Test 27(7):851–857. doi:10.1016/j.polymertesting.2008.07.002

    CAS  Article  Google Scholar 

  5. Binkauskiene E, Lugauskas A, Bukauskas V (2013) The mycological effect on morphological, electrochemical and redox properties of the polyaniline surface. Surf Interface Anal 45(11):1792–1798. doi:10.1002/sia.5324

    CAS  Article  Google Scholar 

  6. Castagna R, Tunesi M, Saglio B, Della Pina C, Sironi A, Albani D, Bertarelli C, Falletta E (2016) Ultrathin electrospun PANI nanofibers for neuronal tissue engineering. J Appl Polym Sci 133(35):10. doi:10.1002/app.43885

    Article  Google Scholar 

  7. Cheng D, Ng SC, Chan HSO (2005) Morphology of polyaniline nanoparticles synthesized in triblock copolymers micelles. Thin Solid Films 477(1–2):19–23. doi:10.1016/j.tsf.2004.08.105

    CAS  Article  Google Scholar 

  8. Czech office for standards, metrology and testing (1999) Czech standard: Water Quality Evaluation of the “Ultimate” Anaerobic Biodegradability of Organic Compounds in Digested Sludge—Method by Measurement of the Biogas Production. CSN EN ISO 11734:1999. Praha

  9. Dhand C, Das M, Sumana G, Srivastava AK, Pandey MK, Kim CG, Datta M, Malhotra BD (2010) Preparation, characterization and application of polyaniline nano spheres to biosensing. Nanoscale 2(5):747–754. doi:10.1039/b9nr00346k

    CAS  Article  Google Scholar 

  10. Diaz AF, Logan JA (1980) Electroactive polyaniline films. J Electroanal Chem 111(1):111–114. doi:10.1016/s0022-0728(80)80081-7

    CAS  Article  Google Scholar 

  11. Epstein AJ, Ginder JM, Zuo F, Woo HS, Tanner DB, Richter AF, Angelopoulos M, Huang WS, MacDiarmid AG (1987) Insulator-to-metal transition in polyaniline: effect of protonation in emeraldine. Synth Met 21:63–70. doi:10.1016/0379-6779(87)90067-1

    CAS  Article  Google Scholar 

  12. Gong J, Li Y, Hu Z, Zhou Z, Deng Y (2010) Ultrasensitive NH3 gas sensor from polyaniline nanograin enchased TiO2 fibers. J Phys Chem C 114:9970–9974. doi:10.1021/jp100685r

    CAS  Article  Google Scholar 

  13. Gupta RK, Singh RA, Dubey SS (2004) Removal of mercury ions from aqueous solutions by composite of polyaniline with polystyrene. Sep Purif Technol 38:225–232. doi:10.1016/j.seppur.2003.11.009

    CAS  Article  Google Scholar 

  14. Hongfang L, Huang L, Huang Z, Gongtai Q, Kei S, Harima Y (2008) Preparation of conducting poly N-methylaniline microsphere and its antibacterial performance to sulfate reducing bacteria. J Wuhan Univ Technol Mater Sci Ed 23(4):536–540. doi:10.1007/s11595-006-4536-6

    Article  Google Scholar 

  15. Jiang N, Xu Y, Dai Y, Luo W, Dai L (2012) Polyaniline nanofibers assembled on alginate microsphere for Cu2 + and Pb2 + uptake. J Hazard Mater 215–216:17–24. doi:10.1016/j.jhazmat.2012.02.026

    Article  Google Scholar 

  16. Julinova M, Dvorackova M, Kupec J, Hubackova J, Kopcilova M, Hoffmann J, Alexy P, Nahálková A, Vaskova I (2008) Influence of technological process on biodegradation of PVA/Waxy starch blends in an aerobic and anaerobic environment. J Polym Environ 16(4):241–249. doi:10.1007/s10924-008-0109-4

    CAS  Article  Google Scholar 

  17. Julinová M, Kupec J, Slavík R, Vašková M (2013) Initiating biodegradation of polyvinylpyrrolidone in an aqueous aerobic environment: technical note/Zainicjowanie Biodegradacji Poliwinylopirolidonu W Środowisku Wodno-Tlenowym: Notatki Techniczne. Ecol Chem Eng S 20(1):199–208. doi:10.2478/eces-2013-0015

    Google Scholar 

  18. Karthik R, Meenakshi S (2016) Biosorption of Pb(II) and Cd (II) ions from aqueous solution using polyaniline/chitin composite. Sep Sci Technol 51(5):733–742. doi:10.1080/01496395.2015.1130060

    CAS  Article  Google Scholar 

  19. Konyushenko EN, Stejskal J, Sedenkova I, Trchova M, Sapurina I, Cieslar M, Prokes J (2006) Polyaniline nanotubes: conditions of formation. Polym Int 55(1):31–39. doi:10.1002/pi.1899

    CAS  Article  Google Scholar 

  20. Kucekova Z, Kasparkova V, Humpolicek P, Sevcikova P, Stejskal J (2013) Antibacterial properties of polyaniline-silver films. Chem Pap 67(8):1103–1108. doi:10.2478/s11696-013-0385-x

    CAS  Article  Google Scholar 

  21. Kumar A, Jangir LK, Kumari Y, Kumar M, Kumar V, Awasthi K (2016) Electrical behavior of dual-morphology polyaniline. J Appl Polym Sci. doi:10.1002/app.44091

    Google Scholar 

  22. Langer K, Barczynski P, Baksalary K, Filipiak M, Golczak S, Langer JJ (2007) A fast and sensitive continuous flow nanobiodetector based on polyaniline nanofibrils. Microchim Acta 159(1–2):201–206. doi:10.1007/s00604-007-0767-2

    CAS  Article  Google Scholar 

  23. Liao Y, Zhang C, Zhang Y, Strong V, Tang J, Li XG, Kalantar-Zadeh K, Hoek EM, Wang KL, Kaner RB (2011) Carbon nanotube/polyaniline composite nanofibers: facile synthesis and chemosensors. Nano Lett 11(3):954–959. doi:10.1021/nl103322b

    CAS  Article  Google Scholar 

  24. Lu QF, Cheng XS (2009) Preparation of high-yield polyaniline nanofibers via an unstirred polymerization. E-polymers 9(1):1007–1016

    Google Scholar 

  25. Morsi RE, Khamis EA, Al-Sabagh AM (2016) Polyaniline nanotubes: facile synthesis, electrochemical, quantum chemical characteristics and corrosion inhibition efficiency. J Taiwan Inst Chem Eng 60:573–581. doi:10.1016/j.jtice.2015.10.028

    CAS  Article  Google Scholar 

  26. Nand AV, Ray S, Travas-Sejdic J, Kilmartin PA (2012) Characterization of antioxidant low density polyethylene/polyaniline blends prepared via extrusion. Mater Chem Phys 135(2–3):903–911. doi:10.1016/j.matchemphys.2012.05.077

    CAS  Article  Google Scholar 

  27. Olad A, Nabavi R (2007) Application of polyaniline for the reduction of toxic Cr(VI) in water. J Hazard Mater 147:845–851. doi:10.1016/j.jhazmat.2007.01.083

    CAS  Article  Google Scholar 

  28. Ping Z, Neugebauer H, Theiner J, Neckel A (1997) Protonation and electrochemical redox doping processes of polyaniline in aqueous solutions: investigations using in situ FTIR-ATR spectroscopy and a new doping system. J Chem Soc, Faraday Trans 93(1):121–129. doi:10.1039/A604620G

    CAS  Article  Google Scholar 

  29. Prabhakaran MP, Ghasemi-Mobarakeh L, Ramakrishna S (2011) Electrospun composite nanofibers for tissue regeneration. J Nanosci Nanotechnol 11(4):3039–3057. doi:10.1166/jnn.2011.3753

    CAS  Article  Google Scholar 

  30. Ruecha N, Rodthongkum N, Cate DM, Volckens J, Chailapakul O, Henry CS (2015) Sensitive electrochemical sensor using a graphene–polyaniline nanocomposite for simultaneous detection of Zn(II), Cd(II), and Pb(II). Anal Chim Acta 874:40–48. doi:10.1016/j.aca.2015.02.064

    CAS  Article  Google Scholar 

  31. Sapurina IY, Shishov MA (2012) Oxidative polymerization of aniline: molecular synthesis of polyaniline and the formation of supramolecular structures. INTECH, New Polym Spec Appl. doi:10.5772/48758

    Google Scholar 

  32. Sapurina I, Stejskal J (2008) The mechanism of the oxidative polymerization of aniline and the formation of supramolecular polyaniline structures. Polym Int 57(12):1295–1325. doi:10.1002/pi.2476

    CAS  Article  Google Scholar 

  33. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC technical report). Pure Appl Chem 74(5):857–867. doi:10.1351/pac200274050857

    CAS  Article  Google Scholar 

  34. Stejskal J, Hlavatá D, Holler P, Trchová M, Prokeš J, Sapurina I (2004) Polyaniline prepared in the presence of various acids: a conductivity study. Polym Int 53(3):294–300. doi:10.1002/pi.1406

    CAS  Article  Google Scholar 

  35. Stejskal J, Hajná M, Kašpárková V, Humpolíček P, Zhigunov A, Trchová M (2014) Purification of a conducting polymer, polyaniline, for biomedical applications. Synth Met 195:286–293. doi:10.1016/j.synthmet.2014.06.020

    CAS  Article  Google Scholar 

  36. Zhang RH, Ma HZ, Wang B (2010) Removal of chromium(VI) from aqueous solutions using polyaniline doped with sulfuric acid. Ind Eng Chem Res 49(20):9998–10004. doi:10.1021/ie1008794

    CAS  Article  Google Scholar 

  37. Zhang X, Qi H, Wang S, Feng L, Ji Y, Tao L, Li S, Wei Y (2012) Cellular responses of aniline oligomers: a preliminary study. Toxicol Res 1(3):201–205. doi:10.1039/c2tx20035j

    CAS  Article  Google Scholar 

  38. Zhihua L, Xuetao H, Jiyong S, Xiaobo Z, Xiaowei H, Xucheng Z, Tahira HE, Holmesb M, Povey M (2016) Bacteria counting method based on polyaniline/bacteria thin film. Biosens Bioelectron 81:75–79. doi:10.1016/j.bios.2016.02.022

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by projects of the Ministry of Education, Youth, and Sports of the Czech Republic within the NPU I program (Contract Grant Number LO1504) and by an internal grant from Tomas Bata University in Zlin (IGA/FT/2016/012). Many thanks go to J. Stejskal for his thoughtful review of the manuscript.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Markéta Julinová.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vyoralová, M., Slavík, R., Julinová, M. et al. New microbial-friendly polyaniline nanoparticles on the base of nitrilotriacetic acid: comparison with PANI prepared by standard techniques. Chem. Pap. 71, 347–357 (2017). https://doi.org/10.1007/s11696-016-0105-4

Download citation

Keywords

  • Polyaniline
  • Nitrilotriacetic acid
  • Electrical conductivity
  • Protonated aniline
  • Nanostructure
  • Environmental behaviour