Skip to main content

Poly(3-hexylthiophene)/gold nanoparticle nanocomposites: relationship between morphology and electrical conductivity


The morphology and electrical properties of gold nanoparticles (AuNP) layer vacuum-deposited onto spin-cast thin films of poly(3-hexylthiophene), P3HT, were studied. The electrical conductivity was measured during temperature cycling and related to the morphology of the same composite structures, which was monitored by transmission electron microscopy (TEM) and extra-high resolution scanning electron microscopy (XHR SEM). Comparison to the analogous polystyrene/AuNP layers was made to distinguish the role of the polymer support on the morphology and electrical properties of the nanoparticles assembly. Gold deposited in a very thin layer formed a nanoparticles-like island structure with the morphology depending on the effective thickness of the deposited layer and on its subsequent thermal treatment. A stabilizing effect of the thiophene–gold interaction on the nanoparticles morphology was observed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5


  • Ahn H, Chandekar A, Kang B, Sung C, Whitten JE (2004) Electrical conductivity and vapor-sensing properties of omega-(3-thienyl)alkanethiol-protected gold nanoparticle films. Chem Mater 16(17):3274–3278. doi:10.1021/cm049794x

    Article  CAS  Google Scholar 

  • An LL, Duan YX, Yuan Y, Zhou LJ, Zhang JM (2013) Effect of thermal annealing on the microstructure of p3ht thin film investigated by rair spectroscopy. Vib Spectrosc 68:40–44. doi:10.1016/j.vibspec.2013.05.002

    Article  CAS  Google Scholar 

  • Ayache J, Beaunier L, Boumendil J, Ehret G, Laub D (2010) Sample preparation handbook for transmission electron microscopy: methodology

  • Beszeda I, Gontier-Moya EG, Imre AW (2005) Surface ostwald-ripening and evaporation of gold beaded films on sapphire. Appl Phys a-Mater Sci Process 81(4):673–677. doi:10.1007/s00339-005-3254-9

    Article  CAS  Google Scholar 

  • Burgi L, Richards TJ, Friend RH, Sirringhaus H (2003) Close look at charge carrier injection in polymer field-effect transistors. J Appl Phys 94(9):6129–6137. doi:10.1063/1.1613369

    Article  CAS  Google Scholar 

  • Chopra N, Wu J, Summerville L (2013) Controlled assembly of graphene shells encapsulated gold nanoparticles and their integration with carbon nanotubes. Carbon 62:76–87. doi:10.1016/j.carbon.2013.05.055

    Article  CAS  Google Scholar 

  • Halasova K, Pfleger J, Sharf A, Vobecky M, Baldrian J, Ladas S et al (2013) Optical and electrical properties of gold nanoparticles/poly(3-alkylthiophene) composites. Sci Adv Mater 5(1):28–36. doi:10.1166/sam.2013.1427

    Article  CAS  Google Scholar 

  • Joshi S, Pingel P, Grigorian S, Panzner T, Pietsch U, Neher D et al (2009) Bimodal temperature behavior of structure and mobility in high molecular weight p3ht thin films. Macromolecules 42(13):4651–4660. doi:10.1021/ma900021w

    Article  CAS  Google Scholar 

  • Kapnopoulos C, Mekeridis ED, Tzounis L, Polyzoidis C, Zachariadis A, Tsimikli S et al (2016) Fully gravure printed organic photovoltaic modules: a straightforward process with a high potential for large scale production. Sol Energy Mater Sol Cells 144:724–731. doi:10.1016/j.solmat.2015.10.021

    Article  CAS  Google Scholar 

  • Kulkarni AP, Noone KM, Munechika K, Guyer SR, Ginger DS (2010) Plasmon-enhanced charge carrier generation in organic photovoltaic films using silver nanoprisms. Nano Lett 10(4):1501–1505. doi:10.1021/nl100615e

    Article  CAS  Google Scholar 

  • Lednicky F, Hromadkova J, Pientka Z (2001) Ultrathin sectioning of polymeric materials for low-voltage transmission electron microscopy. Polymer 42(9):4329–4338. doi:10.1016/s0032-3861(00)00790-4

    Article  CAS  Google Scholar 

  • Morfa AJ, Reilly TH, Rowlen KL, van de Lagemaat J (2007). Annealing effects on surface-plasmon-enhanced bulk heterojunction, organic photovoltaics—art. No. 66561 j. In: Kafafi ZH, Lane PA (eds) Organic photovoltaics viii, vol 6656, p J–J

  • Morfa AJ, Rowlen KL, Reilly TH III, Romero MJ, van de Lagemaat J (2008) Plasmon-enhanced solar energy conversion in organic bulk heterojunction photovoltaics (vol 92, 013504, 2008). Appl Phys Lett 92(13):013504. doi:10.1063/1.2898728

    Article  Google Scholar 

  • Nebesarova J, Langhans J, Slouf M, Pavlova E, Vancova M (2013) Is it possible to measure diameters of metal nanoparticles using bse imaging in fesem? Micron 44:159–166. doi:10.1016/j.micron.2012.06.002

    Article  CAS  Google Scholar 

  • Rechberger W, Hohenau A, Leitner A, Krenn JR, Lamprecht B, Aussenegg FR (2003) Optical properties of two interacting gold nanoparticles. Opt Commun 220(1–3):137–141. doi:10.1016/s0030-4018(03)01357-9

    Article  CAS  Google Scholar 

  • Smacinski H, Ray K, Lakowicz JR (2009) Metal-enhanced fluorescence of tryptophan residues in proteins: application toward label-free bioassays. Anal Biochem 385(2):358–364. doi:10.1016/j.ab.2008.11.025

    Article  Google Scholar 

  • Song TB, Rim YS, Liu FM, Bob B, Ye SL, Hsieh YT et al (2015) Highly robust silver nanowire network for transparent electrode. [Article]. Acs Appl Mater Interfaces 7(44):24601–24607. doi:10.1021/acsami.5b06540

    Article  CAS  Google Scholar 

  • Stratakis E, Kymakis E (2013) Nanoparticle-based plasmonic organic photovoltaic devices. Mater Today 16(4):133–146. doi:10.1016/mattod.2013.04.006

    Article  CAS  Google Scholar 

  • Thakur AK, Mukherjee AK, Preethichandra DMG, Takashima W, Kaneto K (2007) Charge injection mechanism across the au-poly(3-hexylthiophene-2,5-diyl) interface. J Appl Phys 101(10):104508. doi:10.1063/1.2734955

    Article  Google Scholar 

  • Tong SW, Zhang CF, Jiang CY, Liu G, Ling QD, Kang ET et al (2008) Improvement in the hole collection of polymer solar cells by utilizing gold nanoparticle buffer layer. Chem Phys Lett 453(1–3):73–76. doi:10.1016/j.cplett.2008.01.013

    Article  CAS  Google Scholar 

  • Tousek J, Touskova J, Ludvik J, Liska A, Remes Z, Kylian O et al (2016) Comparison of the electron work function, hole concentration and exciton diffusion length for p3ht and pt prepared by thermal or acid cleavage. Solid-State Electron 116:111–118. doi:10.1016/j.sse.2015.11.002

    Article  CAS  Google Scholar 

  • Tzounis L, Contreras-Caceres R, Schellkopf L, Jehnichen D, Fischer D, Cai CZ et al (2014) Controlled growth of ag nanoparticles decorated onto the surface of sio2 spheres: a nanohybrid system with combined sers and catalytic properties. Rsc Adv 4(34):17846–17855. doi:10.1039/c4ra00121d

    Article  CAS  Google Scholar 

  • Tzounis L, Gravalidis C, Papamichail A, Logothetidis S (2016) Enhancement of p3ht: Pcbm photovoltaic shells efficiency incorporating core-shell au@ag plasmonic nanoparticles. Mater Today-Proc 3(3):832–839. doi:10.1016/j.matpr.2016.02.016

    Article  Google Scholar 

  • Yuan J, Hajebifard A, George C, Berini P, Zou S (2013) Ordered gold nanoparticle arrays on glass and their characterization. J Colloid Interface Sci 410:1–10. doi:10.1016/j.jcis.2013.07.070

    Article  CAS  Google Scholar 

Download references


The work was supported through grants GACR P205/10/0348, TACR TE01020118 and by the Ministry of Education, Youth and Sports of CR within the National Sustainability Program I (NPU I), Project POLYMAT LO1507.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Bartosz Paruzel.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Paruzel, B., Pavlova, E., Pfleger, J. et al. Poly(3-hexylthiophene)/gold nanoparticle nanocomposites: relationship between morphology and electrical conductivity. Chem. Pap. 71, 401–408 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Poly(3-hexylthiophene)
  • Gold nanoparticles
  • Nanocomposite
  • Electrical conductivity