Skip to main content

Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology

Abstract

CaO–Al2O3/ZrO2 mixed oxide catalyst was prepared using free-solvent method. The catalyst was characterized using X-ray diffraction, BET surface area, acidity index (obtained by titration method), and scanning electron microscopy (SEM). With calcium aluminate and calcium zirconate been successfully formed, the mix exhibited small crystal size, high acidity, and large surface area, pore size, and pore volume, making it a catalyst of choice for biodiesel production. The activity of catalyst was evaluated in the course of esterification of oleic acid as well as transesterification of waste cooking oil (WCO) into biodiesel. Based on a four-variable central composite design (CCD), response surface methodology (RSM) was used to optimize effective variables on oleic acid conversion. The optimum yield of 94.68% was obtained at the following set of optimum conditions: reaction temperature of 120 °C, methanol/oleic acid molar ratio of 15.64, catalyst concentration of 2.94 wt%, and reaction time of 4 h; the result was in excellent agreement with the predicted values. Furthermore, under the optimum conditions, the catalyst succeeded to convert 93.48% of WCO into biodiesel.

This is a preview of subscription content, access via your institution.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

References

  1. Alhassan FH, Rashid U, Taufiq-Yap YH (2016) Optimization of simultaneous production of waste cooking oil based-biodiesel using iron-manganese doped zirconia-supported molybdenum oxide nanoparticles catalyst. J Renew Sustainable Energy 8(3):033101. doi:10.1063/1.4953090

    Article  Google Scholar 

  2. Altass HM, Khder AERS (2016) Surface and catalytic properties of triflic acid supported zirconia: effect of zirconia tetragonal phase. J Mol Catal A: Chem 411:138–145. doi:10.1016/j.molcata.2015.10.022

    CAS  Article  Google Scholar 

  3. Álvareza M, Ortiz MJ, Roperoa JL, Niñoa ME, Rayonb R, Tzompantzib F, Gomezb R (2009) Evaluation of sulfated aluminas synthesized via the sol–gel method in the esterification of oleic acid with ethanol. Chem Eng Commun 196(10):1152–1162. doi:10.1080/00986440902831722

    Article  Google Scholar 

  4. Atabani AE, Silitonga AS, Badruddin IA, Mahlia TMI, Masjuki HH, Mekhilef S (2012) A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16(4):2070–2093. doi:10.1016/j.rser.2012.01.003

    Article  Google Scholar 

  5. Basha SA, Gopal KR, Jebaraj S (2009) A review on biodiesel production, combustion, emissions and performance. Renew Sustain Energy Rev 13(6–7):1628–1634. doi:10.1016/j.rser.2008.09.031

    CAS  Article  Google Scholar 

  6. Berrios M, Martín MA, Chica AF, Martín A (2010) Study of esterification and transesterification in biodiesel production from used frying oils in a closed system. Chem Eng J 160(2):473–479. doi:10.1016/j.cej.2010.03.050

    CAS  Article  Google Scholar 

  7. Dehkordi AM, Ghasemi M (2012) Transesterification of waste cooking oil to biodiesel using Ca and Zr mixed oxides as heterogeneous base catalysts. Fuel Process Technol 97:45–51. doi:10.1016/j.fuproc.2012.01.010

    Article  Google Scholar 

  8. Ding Y, Sun H, Duan J, Chen P, Lou H, Zheng X (2011) Mesoporous Li/ZrO2 as a solid base catalyst for biodiesel production from transesterification of soybean oil with methanol. Catal Commun 12(7):606–610. doi:10.1016/j.catcom.2010.12.019

    CAS  Article  Google Scholar 

  9. Duan Y, Wu Y, Shi Y, Yang M, Zhang Q, Hu H (2016) Esterification of octanoic acid using SiO2 doped sulfated aluminum-based solid acid as catalyst. Catal Commun 82:32–35. doi:10.1016/j.catcom.2016.04.013

    CAS  Article  Google Scholar 

  10. Enweremadu CC, Mbarawa MM (2009) Technical aspects of production and analysis of biodiesel from used cooking oil—a review. Renew Sustain Energy Rev 13(9):2205–2224. doi:10.1016/j.rser.2009.06.007

    CAS  Article  Google Scholar 

  11. Hamze H, Akia M, Yazdani F (2015) Optimization of biodiesel production from the waste cooking oil using response surface methodology. Process Saf Environ Prot 94:1–10. doi:10.1016/j.psep.2014.12.005

    CAS  Article  Google Scholar 

  12. Huang CC, Yang CJ, Gao PJ, Wang NC, Chen CL, Chang JS (2015) Characterization of an alkaline earth metal-doped solid superacid and its activity for the esterification of oleic acid with methanol. Green Chem 17(6):3609–3620. doi:10.1039/C5GC00188A

    CAS  Article  Google Scholar 

  13. Jacobson K, Gopinath R, Meher LC, Dalai AK (2008) Solid acid catalyzed biodiesel production from waste cooking oil. Appl Catal B 85(1–2):86–91

    CAS  Article  Google Scholar 

  14. Janáková S, Salavcová L, Renaudin G, Filinchuk Y, Boyer D, Boutinaud P (2007) Preparation and structural investigations of sol–gel derived-doped. J Phys Chem Solids 68(5–6):1147–1151. doi:10.1016/j.jpcs.2006.12.034

    Article  Google Scholar 

  15. Kulkarni MG, Dalai AK (2006) Waste cooking oil an economical source for biodiesel: a review. Ind Eng Chem Res 45(9):2901–2913. doi:10.1021/ie0510526

    CAS  Article  Google Scholar 

  16. Liao CC, Chung TW (2013) Optimization of process conditions using response surface methodology for the microwave-assisted transesterification of Jatropha oil with KOH impregnated CaO as catalyst. Chem Eng Res Des 91(12):2457–2464. doi:10.1016/j.cherd.2013.04.009

    CAS  Article  Google Scholar 

  17. Liu S, Ma J, Guan L, Li J, Wei W, Sun Y (2009) Mesoporous CaO–ZrO2 nano-oxides: a novel solid base with high activity and stability. Microporous Mesoporous Mater 117(1–2):466–471. doi:10.1016/j.micromeso.2008.07.026

    CAS  Article  Google Scholar 

  18. Liu L, Wen Z, Cui G (2015) Preparation of Ca/Zr mixed oxide catalysts through a birch-templating route for the synthesis of biodiesel via transesterification. Fuel 158:176–182. doi:10.1016/j.fuel.2015.05.025

    CAS  Article  Google Scholar 

  19. Lukić I, Krstić J, Glišić S, Jovanović D, Skala D (2010) Biodiesel synthesis using K2CO3/Al–O–Si aerogel catalysts. J Serb Chem Soc 75(6):789–801

    Article  Google Scholar 

  20. Meher LC, Vidya Sagar D, Naik SN (2006) Technical aspects of biodiesel production by transesterification—a review. Renew Sustain Energy Rev 10(3):248–268

    CAS  Article  Google Scholar 

  21. Mello VM, Pousa GPAG, Pereira MSC, Dias IM, Suarez PAZ (2011) Metal oxides as heterogeneous catalysts for esterification of fatty acids obtained from soybean oil. Fuel Process Technol 92(1):53–57

    CAS  Article  Google Scholar 

  22. Mir M, Ghoreishi SM (2015) Response surface optimization of biodiesel production via catalytic transesterification of fatty acids. Chem Eng Technol 38(5):834–835. doi:10.1002/ceat.201300328

    Article  Google Scholar 

  23. Mondal A, Ram S (2004) Reconstructive phase formation of ZrO2 nanoparticles in a new orthorhombic crystal structure from an energized porous ZrO(OH)2·xH2O precursor. Ceram Int 30(2):239–249

    CAS  Article  Google Scholar 

  24. Montgomery DC (2001) Design and analysis of experiments, 5th edn. Wiley, New York

    Google Scholar 

  25. Moradi G, Mohadesi M, Rezaei R, Moradi R (2015) Biodiesel production using CaO/γ-Al2O3 catalyst synthesized by Sol–Gel method. Can J Chem Eng 93(9):1531–1538. doi:10.1002/cjce.22258

    CAS  Article  Google Scholar 

  26. Nayebzadeh H, Saghatoleslami N, Maskooki A, Vahid BR (2014) Preparation of supported nanosized sulfated zirconia by strontia and assessment of its activities in the esterification of oleic acid. Chem Biochem Eng Q 25(3):259–265. doi:10.15255/CABEQ.2013.1894

    Article  Google Scholar 

  27. Omar WNNW, Amin NAS (2011a) Biodiesel production from waste cooking oil over alkaline modified zirconia catalyst. Fuel Process Technol 92(12):2397–2405. doi:10.1016/j.fuproc.2011.08.009

    Article  Google Scholar 

  28. Omar WNNW, Amin NAS (2011b) Optimization of heterogeneous biodiesel production from waste cooking palm oil via response surface methodology. Biomass Bioenergy 35(3):1329–1338

    CAS  Article  Google Scholar 

  29. Pasupulety N, Gunda K, Liu Y, Rempel GL, Ng FTT (2013) Production of biodiesel from soybean oil on CaO/Al2O3 solid base catalysts. Appl Catal A 452(1):189–202. doi:10.1016/j.apcata.2012.10.006

    CAS  Article  Google Scholar 

  30. Patel A, Brahmkhatri V, Singh N (2013) Biodiesel production by esterification of free fatty acid over sulfated zirconia. Renew Energy 51:227–233. doi:10.1016/j.renene.2012.09.040

    CAS  Article  Google Scholar 

  31. Varghese N, Hariharan M, Cherian B, Sreenivasan PV, Paul J, K.A A. A (2014) PVA—assisted synthesis and characterization of nano α-alumina. Int J Sci Res Publ 4(10), 1–5

  32. Sani YM, Alaba PA, Raji-Yahya AO, Abdul Aziz AR, Daud WMAW (2016a) Acidity and catalytic performance of Yb-doped/Zr in comparison with/Zr catalysts synthesized via different preparatory conditions for biodiesel production. J Taiwan Inst Chem Eng 59:195–204. doi:10.1016/j.jtice.2015.07.016

    CAS  Article  Google Scholar 

  33. Sani YM, Alaba PA, Raji-Yahya AO, Abdul Aziz AR, Daud WMAW (2016b) Facile synthesis of sulfated mesoporous Zr/ZSM-5 with improved Brønsted acidity and superior activity over SZr/Ag, SZr/Ti, and SZr/W in transforming UFO into biodiesel. J Taiwan Ins Chem Eng 60:247–257. doi:10.1016/j.jtice.2015.10.010

    CAS  Article  Google Scholar 

  34. Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2015) Esterification of palmitic acid with methanol over template-assisted mesoporous sulfated zirconia solid acid catalyst. Appl Catal B 172–173:108–115. doi:10.1016/j.apcatb.2015.02.014

    Article  Google Scholar 

  35. Saravanan K, Tyagi B, Shukla RS, Bajaj HC (2016) Solvent free synthesis of methyl palmitate over sulfated zirconia solid acid catalyst. Fuel 165:298–305. doi:10.1016/j.fuel.2015.10.043

    CAS  Article  Google Scholar 

  36. Shahraki H, Entezari MH, Goharshadi EK (2015) Sono-synthesis of biodiesel from soybean oil by KF/γ-Al2O3 as a nano-solid-base catalyst. Ultrason Sonochem 23:266–274. doi:10.1016/j.ultsonch.2014.09.010

    CAS  Article  Google Scholar 

  37. Shao GN, Sheikh R, Hilonga A, Lee JE, Park YH, Kim HT (2013) Biodiesel production by sulfated mesoporous titania–silica catalysts synthesized by the sol–gel process from less expensive precursors. Chem Eng J 215–216:600–607. doi:10.1016/j.cej.2012.11.059

    Article  Google Scholar 

  38. Sun Y, Ma S, Du Y, Yuan L, Wang S, Yang J, Xiao F-S (2005) Solvent-free preparation of nanosized sulfated zirconia with brønsted acidic sites from a simple calcination. J Phys Chem B 109(7):2567–2572. doi:10.1021/jp046335a

    CAS  Article  Google Scholar 

  39. Suwito S, Dragone G, Sulistyo H, Murachman B, Purwono S, Teixeira J (2012) Optimization of pretreatment of Jatropha oil with high free fatty acids for biodiesel production. Front Chem Sci Eng 6(2):210–215. doi:10.1007/s11705-012-1282-5

    CAS  Article  Google Scholar 

  40. Tian X, Xiao T, Yang C, Zhou Z, Ke H (2010) Synthesis of crystalline ordered mesoporous CaO–ZrO2 solid solution as a promising solid base. Mater Chem Phys 124(1):744–747. doi:10.1016/j.matchemphys.2010.07.050

    CAS  Article  Google Scholar 

  41. Umdu ES, Seker E (2012) Transesterification of sunflower oil on single step sol–gel made Al2O3 supported CaO catalysts: effect of basic strength and basicity on turnover frequency. Bioresour Technol 106:178–181. doi:10.1016/j.biortech.2011.11.135

    CAS  Article  Google Scholar 

  42. Umdu ES, Tuncer M, Seker E (2009) Transesterification of nannochloropsis oculata microalga’s lipid to biodiesel on Al2O3 supported CaO and MgO catalysts. Bioresour Technol 100(11):2828–2831. doi:10.1016/j.biortech.2008.12.027

    CAS  Article  Google Scholar 

  43. Vahid BR, Saghatoleslami N, Nayebzadeh H, Maskooki A (2012) Preparation of nano-size Al-promoted sulfated zirconia and the impact of calcination temperature on its catalytic activity. Chem Biochem Eng Q 26(2):71–77

    CAS  Google Scholar 

  44. Wang H, Wang M, Zhao N, Wei W, Sun Y (2005) CaO–ZrO2 Solid Solution: a highly stable catalyst for the synthesis of dimethyl carbonate from propylene carbonate and methanol. Catal Lett 105(3):253–257. doi:10.1007/s10562-005-8699-0

    CAS  Article  Google Scholar 

  45. Wang Y, Wu H, Zong MH (2008) Improvement of biodiesel production by lipozyme TL IM-catalyzed methanolysis using response surface methodology and acyl migration enhancer. Bioresour Technol 99(15):7232–7237. doi:10.1016/j.biortech.2007.12.062

    CAS  Article  Google Scholar 

  46. Wijayanti H, Duangchan A (2016) Effect of nickel promoter on solvent-free sulphated zirconia catalyst for the esterification of acetic acid with n-butanol. Can J Chem Eng 94(1):81–88. doi:10.1002/cjce.22351

    CAS  Article  Google Scholar 

  47. Wongmaneenil P, Jongsomjit B, Praserthdam P (2010) Study on solvent/alkoxide molar ratios on synthesis zirconia nanoparticles for tungstated zirconia catalysts over esterification. Catal Lett 139(1):42–49. doi:10.1007/s10562-010-0403-3

    CAS  Article  Google Scholar 

  48. Yatish KV, Lalithamba HS, Suresh R, Arun SB, Kumar PV (2016) Optimization of scum oil biodiesel production by using response surface methodology. Process Saf Environ Prot 102:667–672. doi:10.1016/j.psep.2016.05.026

    CAS  Article  Google Scholar 

  49. Yee KF, Wu JCS, Lee KT (2011) A green catalyst for biodiesel production from jatropha oil: optimization study. Biomass Bioenergy 35(5):1739–1746

    CAS  Article  Google Scholar 

  50. Yuan X, Liu J, Zeng G, Shi J, Tong J, Huang G (2008) Optimization of conversion of waste rapeseed oil with high FFA to biodiesel using response surface methodology. Renew Energy 33(7):1678–1684

    CAS  Article  Google Scholar 

  51. Zabeti M, Daud WMAW, Aroua MK (2009) Optimization of the activity of CaO/Al2O3 catalyst for biodiesel production using response surface methodology. Appl Catal A 366(1):154–159. doi:10.1016/j.apcata.2009.06.047

    CAS  Article  Google Scholar 

  52. Zabeti M, Daud WMAW, Aroua MK (2010) Biodiesel production using alumina-supported calcium oxide: an optimization study. Fuel Process Technol 91(2):243–248

    CAS  Article  Google Scholar 

Download references

Acknowledgement

Financial support of the Islamic Azad University, Quchan branch is gratefully acknowledged.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Mohammad Hojjat.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hojjat, M., Nayebzadeh, H., Khadangi-Mahrood, M. et al. Optimization of process conditions for biodiesel production over CaO–Al2O3/ZrO2 catalyst using response surface methodology. Chem. Pap. 71, 689–698 (2017). https://doi.org/10.1007/s11696-016-0096-1

Download citation

Keywords

  • Calcium zirconate
  • Calcium aluminate
  • Esterification of oleic acid
  • Transesterification of waste cooking oil (WCO)
  • Response surface methodology (RSM)