Advertisement

Chemical Papers

, Volume 71, Issue 2, pp 505–512 | Cite as

Formation of bacterial and fungal biofilm on conducting polyaniline

  • Nikola Mikušová
  • Petr HumpolíčekEmail author
  • Jan Růžička
  • Zdenka Capáková
  • Kristýna Janů
  • Věra Kašpárková
  • Patrycja Bober
  • Jaroslav Stejskal
  • Marek Koutný
  • Katerina Filatová
  • Marián Lehocký
  • Petr Ponížil
Original Paper

Abstract

Polyaniline is an important conducting polymer with numerous applications and its surface properties, and consequently functionality, can be significantly influenced by bacterial biofilm. This paper represents the first ever study of biofilm formation on surface of polyaniline salt, polyaniline base and polyaniline doped with biologically active poly(2-acrylamido-2-methyl-1-propanesulfonic acid) (PAMPSA) and phosphotungstic acid. The surface energy and conductivity of the films were measured and correlated to capability of selected strains of biofilm-positive bacteria and filamentous fungi to form a biofilm thereon. It was observed that polyaniline salt did not inhibit the growth of microorganisms, whereas polyaniline doped with PAMPSA exhibited a notable effect against growth of biofilm for all the bacterial strains used. The results advance present knowledge of biofilm formation on polyaniline.

Keywords

Bacteria Filamentous fungi Biofilm Polyaniline Conducting polymer Coating 

Notes

Acknowledgements

This work was supported by the Ministry of Education, Youth and Sports of the Czech Republic—Programme NPU I (LO1504), and the authors also wish to thank the Internal Grant Agency (Project IGA/CPS/2015/002, IGA/CPS/2016/001). P.B. and J.S. thank the Czech Science Foundation (16-02787S) for the financial support. N.M. thanks the Czech Science Foundation (15-08287Y).

References

  1. An YH, Friedman RJ (2000) Handbook of bacterial adhesion principles, methods, and applications. Humana Press, Totowa. ISBN 9781592592241CrossRefGoogle Scholar
  2. Baldissera AF, de Miranda KL, Bressy C, Martin C, Margaillan A, Ferreira CA (2015) Using conducting polymers as active agents for marine antifouling paints. Mater Res 18:1129–1139. doi: 10.1590/1516-1439-261414 CrossRefGoogle Scholar
  3. Binkauskiene E, Lugauskas A, Bukauskas V (2013) The mycological effect on morphological, electrochemical and redox properties of the polyaniline surface. Surf Interface Anal 45:1792–1798. doi: 10.1002/sia.5324 CrossRefGoogle Scholar
  4. Bober P, Humpolicek P, Pachernik P, Stejskal J, Lindfors T (2015) Conducting polyaniline based cell culture substrate for embryonic stem cells and embryoid bodies. RSC Adv 5:50328–50335. doi: 10.1039/c5ra07504a CrossRefGoogle Scholar
  5. Chauhan NPS, Ameta R, Ameta R, Ameta SC (2010) Biological activity of emeraldine bases of polyaniline. J Indian Counc Chem 27:128–133Google Scholar
  6. Conato M, Sumera F (2012) Biodegradable polyesters and polyamides from difunctionalized lauric and coconut fatty acids. J Polym Environ 20:217–223. doi: 10.1007/s10924-011-0397-y CrossRefGoogle Scholar
  7. Deshpande PP, Vathare SS, Vagge ST, Tomšík E, Stejskal J (2013) Conducting polyaniline/multi-wall carbon nanotubes composite paints on low carbon steel for corrosion protection: electrochemical investigations. Chem Pap 67:1072–1078. doi: 10.2478/S11696-012-0273-9 Google Scholar
  8. Eroshenko D, Morozov I, Korobov V (2015) The role of plasma, albumin, and fibronection in Staphylococcus epidermidis adhesion to polystyrene surface. Curr Microbiol 70:846–853. doi: 10.1007/s00284-015-0796-8 CrossRefGoogle Scholar
  9. Garrett TR, Bhakoo M, Zhang Z (2008) Bacterial adhesion and biofilms on surfaces. Prog Nat Sci 18:1049–1056. doi: 10.1016/j.pnsc.2008.04.001 CrossRefGoogle Scholar
  10. Gizdavic-Nikolaidis MR, Bennett JR, Swift S, Easteal AJ, Ambrose M (2011) Broad spectrum antimicrobial activity of functionalized polyanilines. Acta Biomater 7:4204–4209. doi: 10.1016/j.actbio.2011.07.018 CrossRefGoogle Scholar
  11. Gizdavic-Nikolaidis MR, Bennett J, Zujovic Z, Swift S, Bowmaker GA (2012) Characterization and antimicrobial efficacy of acetone extracted aniline oligomers. Synth Metal 162(13–14):1114–1119CrossRefGoogle Scholar
  12. Gribkova OL, Nekrasov AA, Trchova M, Ivanov VF, Sazikov VI, Razova AB, Tverskoy VA, Vannikov AV (2011) Chemical synthesis of polyaniline in the presence of poly(amidosulfonic acids) with different rigidity of the polymer chain. Polymer 52:2474–2484. doi: 10.1016/j.polymer.2011.04.003 CrossRefGoogle Scholar
  13. Humpolicek P, Kucekova Z, Kasparkova V, Pelková J, Modic M, Junkar I, Trchová M, Bober P, Stejskal J, Lehocký M (2015) Blood coagulation and platelet adhesion on polyaniline films. Colloids Surf B 133:278–285. doi: 10.1016/j.colsurfb.2015.06.008 CrossRefGoogle Scholar
  14. Illing G, Hellgardt K, Wakeman RJ, Jungbauer A (2001) Preparation and characterisation of polyaniline based membranes for gas separation. J Membr Sci 184:69–78. doi: 10.1016/S0376-7388(00)00606-2 CrossRefGoogle Scholar
  15. Jia Q, Shan S, Jiang L, Wang Y, Li D (2012) Synergistic antimicrobial effects of polyaniline combined with silver nanoparticles. J Appl Polym Sci 125(5):3560–3566CrossRefGoogle Scholar
  16. Kalendová A, Sapurina I, Stejskal J, Veselý D (2008) Anticorrosion properties of polyaniline-coated pigments in organic coatings. Corros Sci 50:3549–3560. doi: 10.1016/j.corsci.2008.08.044 CrossRefGoogle Scholar
  17. Kelly FM, Meunier L, Cochrane C, Koncar V (2013) Polyaniline: application as solid state electrochromic in a flexible textile display. Displays 34:1–7. doi: 10.1016/j.displa.2012.10.001 CrossRefGoogle Scholar
  18. Koutny M, Sancelme M, Dabin C et al (2006) Acquired biodegradability of polyethylenes containing pro-oxidant additives. Polym Degrad Stab 91(7):1495–1503. doi: 10.1016/j.polymdegradstab.2005.10.007 CrossRefGoogle Scholar
  19. Kucekova Z, Kasparkova V, Humpolicek P, Sevcikova P, Stejskal J (2013) Antibacterial properties of polyaniline–silver films. Chem Pap 97:1103–1108. doi: 10.2478/s11696-013-0385-x Google Scholar
  20. Kucekova Z, Humpolicek P, Kasparkova V, Perecko T, Lehocký M, Hauerlandová I, Sáha P, Stejskal J (2014) Colloidal polyaniline dispersions: Antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloid Surf B Biointerface 116:411–417CrossRefGoogle Scholar
  21. Lange U, Roznyatovskaya NV, Mirsky VM (2008) Conducting polymers in chemical sensors and arrays. Anal Chim Acta 614(1):1–26CrossRefGoogle Scholar
  22. Liang X, Sun M, Li L, Qiao R, Chen K, Xiao Q, Xu F (2012) Preparation and antibacterial activities of polyaniline/Cu0.05Zn0.95O nanocomposites. Dalton Trans 41(9):2804CrossRefGoogle Scholar
  23. Muchova M, Ruzicka J, Julinova M, Dolezalova M, Houser J, Koutny M, Bunkova L (2009) Xanthan and gellan degradation by bacteria of activated sludge. Water Sci Technol 60:965–973. doi: 10.2166/wst.2009.443 CrossRefGoogle Scholar
  24. Nambiar S, Yeow JTW (2011) Conductive polymer-based sensors for biomedical applications. Biosens Bioelectron 26:1825–1832. doi: 10.1016/j.bios.2010.09.046 CrossRefGoogle Scholar
  25. Park E, Kim H, Song J, Oh H, Song H, Jang J (2012) Synthesis of silver nanoparticles decorated polypyrrole nanotubes for antimicrobial application. Macromol Res 20(10):1096–1101CrossRefGoogle Scholar
  26. Rodrigues LR, Banat IM, Mei HC, Teixeira JA, Oliveira R, (2006) Interference in adhesion of bacteria and yeasts isolated from explanted voice prostheses to silicone rubber by rhamnolipid biosurfactants. J Appl Microb 100(3):470–480CrossRefGoogle Scholar
  27. Smyth MR, Zhao H, Wallace GG (1999) Conducting electroactive polymer-based biosensors. Trends Anal Chem 18:245–251. doi: 10.1016/S0165-9936(98)00113-7 CrossRefGoogle Scholar
  28. Stejskal J, Gilbert RG (2002) Polyaniline. Preparation of a conducting polymer (IUPAC Technical Report). Pure Appl Chem 74:857–867CrossRefGoogle Scholar
  29. Stejskal J (2013) Conducting polymer–silver composites. Chem Pap 67:814–848. doi: 10.2478/S11696-012-0304-6 CrossRefGoogle Scholar
  30. Stejskal J, Sapurina I (2005) Polyaniline: thin films and colloidal dispersions (IUPAC technical report). Pure Appl Chem 77:815–826. doi: 10.1351/pac200577050815 CrossRefGoogle Scholar
  31. Stejskal J, Prokeš J, Trchová M (2008) Reprotonation of polyaniline: a route to various conducting polymer materials. React Funct Polym 68:1355–1361. doi: 10.1016/jreactfunctpolym.2008.06.012 CrossRefGoogle Scholar
  32. Strömberg E, Karlsson S (2009) The effect of biodegradation on surface and bulk property changes of polypropylene, recycled polypropylene and polylactide biocomposites. Int Biodeterior Biodegrad 63:1045–1053. doi: 10.1016/j.ibiod.2009.08.003 CrossRefGoogle Scholar
  33. Szczesna-Antczak M, Kaczorowska A, Kaczorowski W, Antczak T (2014) Biomodification and biodeterioration of carbon coatings by fungal strains. Int Biodeterior Biodegrad 88:106–117. doi: 10.1016/j.ibiod.2013.12.013 CrossRefGoogle Scholar
  34. Wu W, Giese RF Jr, Van Oss CJ (1995) Evaluation of the Lifshitz-van der Waals/acid-base approach to determine surface tension components. Langmuir 11(1):379–382. doi: 10.1021/la00001a064 CrossRefGoogle Scholar
  35. Yehgambaram P, Prasad RGSV, Jakka VS, Aparna RSL, Phani AR (2013) Antifungal activity of nanostructured polyaniline combined with fluconazole. J Pharm Res 6:26–31. doi: 10.1016/j.jopr.2012.11.009 Google Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Nikola Mikušová
    • 1
  • Petr Humpolíček
    • 1
    • 2
    Email author
  • Jan Růžička
    • 3
  • Zdenka Capáková
    • 2
  • Kristýna Janů
    • 1
  • Věra Kašpárková
    • 1
    • 4
  • Patrycja Bober
    • 5
  • Jaroslav Stejskal
    • 5
  • Marek Koutný
    • 3
  • Katerina Filatová
    • 1
  • Marián Lehocký
    • 2
  • Petr Ponížil
    • 2
    • 6
  1. 1.Polymer Centre, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  2. 2.Center of Polymer SystemsTomas Bata University in ZlinZlinCzech Republic
  3. 3.Department of Environmental Protection Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  4. 4.Department of Fat, Surfactant and Cosmetics Technology, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic
  5. 5.Institute of Macromolecular ChemistryAcademy of Sciences of the Czech RepublicPrague 6Czech Republic
  6. 6.Department of Physics and Materials Engineering, Faculty of TechnologyTomas Bata University in ZlinZlinCzech Republic

Personalised recommendations