Cytotoxicity of poly(p-phenylenediamine)


Although poly(p-phenylenediamine) is an electric non-conductor, it exhibits, analogously to conducting polymers, redox activity and could, therefore, find applications in biomedicine. In the current work, the cytotoxicity of poly(p-phenylenediamine) polymer powder produced by the chemical oxidation of p-phenylenediamine with ammonium peroxydisulfate in acidic aqueous media has been studied. Primary mouse embryonic fibroblasts were used for this purpose. Interestingly, the standard methods for the determination of polymer cytotoxicity based on international standard EN ISO 10993-5 could not be applied. The reason was the interaction of polymer extracts with MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide] assay. On the basis of the evaluation of flow cytometry and micrographs taken by fluorescence microscopy on cells treated with extracts of poly(p-phenylenediamine), it can be concluded that the powder polymer possesses severe cytotoxicity. The results suggest that practical application of the polymer within biomedicine is, at the current state of knowledge, difficult, and modification of the preparation techniques and/or subsequent purification of poly(p-phenylenediamine) is needed.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6


  1. Baghayeri M, Zare EN, Lakouraj MM (2014) A simple hydrogen peroxide biosensor based on a novel electro-magnetic poly(p-phenylenediamine)@Fe3O4 nanocomposite. Biosens Bioelectron 55:259–265. doi:10.1016/j.bios.2013.12.033

    CAS  Article  Google Scholar 

  2. Boonchiangma S, Srijaranai S, Tuntulani T, Ngeontae W (2014) A highly selective electrochemical sensor for l-tryptophan based on a screen-printed carbon electrode modified with poly-p-phenylenediamine and CdS quantum dots. J Appl Polym Sci 131:40356. doi:10.1002/app.40356

    Article  Google Scholar 

  3. Feng J, Sun T, Zhu J (2016) Flexible semiconductor film based on properties poly(o-phenylenediamine) nano ribbon as biologically active substrate. Synth Met 213:12–17. doi:10.1016/j.synthmet.2015.12.027

    CAS  Article  Google Scholar 

  4. Guimard NK, Gomez N, Schmidt C (2007) Conducting polymers in biomedical engineering. Prog Polym Sci 32:876–921. doi:10.1016/j.progpolymsci.2007.05.012

    CAS  Article  Google Scholar 

  5. Humpolíček P, Kašpárková V, Sáha P, Stejskal J (2012) Biocompatibility of polyaniline. Synth Met 162:722–727. doi:10.1016/j.synthmet.2012.02.024

    Article  Google Scholar 

  6. Kašpárková V, Humpolíček P, Stejskal J, Kopecká J, Kuceková Z, Moučka R (2016) Conductivity, impurity profile, and cytotoxicity of solvent-extracted polyaniline. Polym Adv Technol 27:156–161. doi:10.1002/pat.3611

    Article  Google Scholar 

  7. Kuceková Z, Humpolíček P, Kašpárková V, Perečko T, Lehocký M, Hauerlandová I, Stejskal J (2014) Colloidal polyaniline dispersions: antibacterial activity, cytotoxicity and neutrophil oxidative burst. Colloids Surf B-Biointerfaces 116:411–417. doi:10.1016/j.colsurfb.2014.01.027

    Article  Google Scholar 

  8. Lakard S, Herlem G, Propper A, Kastner A, Michel G, Valles-Villarreal N, Fahys B (2004) Adhesion and proliferation of cells on new polymers modified biomaterials. Bioelectrochemistry 62:19–27. doi:10.1016/j.bioelechem.2003.03.009

    CAS  Article  Google Scholar 

  9. Liu S, Yu B, Zhang T (2013) Preparation of crumpled reduced graphene oxide–poly(p-phenylenediamine) hybrids for the detection of dopamine. J Mater Chem A 1:13314–13320. doi:10.1039/c3ta12594g

    CAS  Article  Google Scholar 

  10. Sheftel VO (1995) Handbook of toxic properties of monomers and additives. CRC Press, Boca Raton

    Google Scholar 

  11. Stejskal J (2015) Polymers of phenylenediamines. Prog Polym Sci 41:1–31. doi:10.1016/j.progpolymsci.2014.10.007

    CAS  Article  Google Scholar 

  12. Stejskal J, Hajná M, Kašpárková V, Humpolíček P, Zhigunov A, Trchová M (2014) Purification of a conducting polymer, polyaniline, for biomedical applications. Synth Met 195:286–293. doi:10.1016/j.synthmet.2014.06.020

    CAS  Article  Google Scholar 

  13. Yang S, Huang S, Liu D, Liao F (2012) Characterization and morphology control of poly(p-phenylenediamine) nanofibers: a novel, simple and highly selective fluorescent probe for thiols. Synth Met 162:2228–2235. doi:10.1016/j.synthmet.2012.10.024

    CAS  Article  Google Scholar 

  14. Zhang T, Yang S, Sun J, Li X, He L, Yan S, Liao F (2013) Poly(p-phenylenediamine) fluorescent nanosphere: a ultra-sensitive fluorescent probe for caffeine. Synth Met 181:86–91. doi:10.1016/j.synthmet.2013.08.008

    CAS  Article  Google Scholar 

Download references


The authors thank the Ministry of Education, Youth and Sports of the Czech Republic (NPU I, LO1504), the Internal Grant Agency (projects IGA/CPS/2015/002 and IGA/CPS/2016/001) and the Czech Science Foundation (13-00270S) for financial support.

Author information



Corresponding author

Correspondence to Petr Humpolíček.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Kuceková, Z., Rejmontová, P., Humpolíček, P. et al. Cytotoxicity of poly(p-phenylenediamine). Chem. Pap. 71, 367–372 (2017).

Download citation


  • Cytotoxicity
  • Poly(p-phenylenediamine)
  • Mouse embryonic fibroblasts
  • Conducting polymers