Advertisement

Chemical Papers

, Volume 71, Issue 1, pp 13–20 | Cite as

Biodegradation of imidacloprid by composting process

  • Željko Herner
  • Dajana KučićEmail author
  • Bruno Zelić
Original Paper

Abstract

This work presents the biodegradation of imidacloprid during composting process in a closed reactor. Composting mass was prepared from fresh vegetable waste, tobacco waste, dry leaves, imidacloprid 1.25 mg/kg (dry solids) and bacterial suspension of Pseudomonas aeruginosa FN. The composting process was carried out under forced aeration (0.516 dm3/min/kg) in a column reactor (10 dm3) under adiabatic conditions over 21 days. In a closed reactor system, the intense biodegradation of imidacloprid was during first 7 days when 68% of imidacloprid was degraded. The conversion and rate of biodegradation of imidacloprid in a closed reactor was much higher and faster than in an open pile. Imidacloprid degradation during composting process was described and simulated as first-order process. Degradation constant and half-life of imidacloprid were estimated in a closed reactor (k d  = 0.135 ± 0.016 mg/kg/day, t 1/2 = 5.13 days) and in an open pile (k d  = 0.025 ± 0.002 mg/kg/day, t 1/2 = 27.88 days).

Keywords

Composting process Imidacloprid Pseudomonas aeruginosa FN Kinetics of biodegradation 

References

  1. Akoijam R, Singh B (2015) Biodegradation of imidacloprid in sandy loam soil by Bacillus aerophilus. Int J Environ Anal Chem 95:730–743. doi: 10.1080/03067319.2015.1055470 CrossRefGoogle Scholar
  2. Anderson JC, Dubetz C, Palace VP (2015) Neonicotinoids in the Canadian aquatic environment: a literature review on current use products with a focus on fate, exposure, and biological effects. Sci Total Environ 505:209–422. doi: 10.1016/j.scitotenv.2014.09.090 CrossRefGoogle Scholar
  3. APHA (1985) Standard methods for the examination of water and wastewater, 16th edn. American Public Health Association, Washington, DCGoogle Scholar
  4. Arias-Estevez M, Lopez-Periago E, Martinez-Carballo E, Simal-Gandara J, Carlos Mejuto J, Garcıa-Rıo L (2008) The mobility and degradation of pesticides in soils and the pollution of groundwater resources. Agric Ecosyst Environ 123:247–260. doi: 10.1016/j.agee.2007.07.011 CrossRefGoogle Scholar
  5. Austrian Standards Institute (1986) Austrian standard: Analytical methods and quality control for waste compost. ÖNORM S 2023. Vienna, AustriaGoogle Scholar
  6. Bonmatin JM, Moineau I, Charvet R, Colin ME, Fleche C, Bengsch ER (2005) Behaviour of Imidacloprid in Fields. Toxicity for Honey Bees. In: Lichtfouse E, Schwarzbauer J, Didier R (eds) Environmental chemistry—green chemistry and pollutants in ecosystems, Chapter 44. Springer, Berlin, Heidelberg, pp 483–494. doi: 10.1007/3-540-26531-7_44 Google Scholar
  7. Briški F, Gomzi Z, Horgas N, Vuković M (2003) Aerobic composting of tobacco solid waste. Acta Chim Slov 50:715–729. doi: 10.1007/s10098-003-0218-7 Google Scholar
  8. Briški F, Kopčić N, Ćosić I, Kučić D, Vuković M (2012) Biodegradation of tobacco waste by composting: genetic identification of nicotine-degrading bacteria and kinetic analysis of transformations in leachate. Chem Pap 66:1103–1110. doi: 10.2478/s11696-012-0234-3 Google Scholar
  9. Broznić D, Cedomila M (2008) NeonikotinoidiAgonisti nikotinskih acetilkolinskih receptora. Zbornik radova Stručnog seminara “Kontrola štetnika—Pest Control”. Rijeka (Komora sanitarnih inženjera i tehničara), Croatia, pp 2–9Google Scholar
  10. Broznić D, Milin Č (2013) Mathematical prediction of imidacloprid persistence in two Croatian soils with different texture, organic matter content and acidity under laboratory conditions. J Environ Sci Health Part A 48:906–918. doi: 10.1080/03601234.2013.816561 CrossRefGoogle Scholar
  11. Bryden J, Gill RJ, Mitton RAA, Raine NE, Jensen VAA (2013) Chronic sublethal stress causes bee colony failure. Ecol Lett 16:1463–1469. doi: 10.1111/ele.12188 CrossRefGoogle Scholar
  12. Chen Y, Zhou W, Li Y, Zhang J, Zeng G, Huang A, Huang J (2014) Nitrite reductase genes as functional markers to investigate diversity of denitrifying bacteria during agricultural waste composting. Appl Microbiol Biotechnol 98:4233–4243. doi: 10.1007/s00253-014-5514-0 CrossRefGoogle Scholar
  13. Cheyns K, Mertens J, Diels J, Smolders E, Springael D (2010) Monod kinetics rather than a firs-order degradation model explains atrazine fate in soil mini-columns: implications for pesticide fate modelling. Environ Pollut 158:1405–1411. doi: 10.1016/j.envpol.2009.12.041 CrossRefGoogle Scholar
  14. Chishti Z, Hussain S, Arshad KR, Khalid A, Arshad M (2013) Microbial degradation of chlorpyrifos in liquid media and soil. J Environ Manage 114:372–380. doi: 10.1016/j.jenvman.2012.10.032 CrossRefGoogle Scholar
  15. Epstein E (1997) The science of composting, Chapter 2. Technomic Publishing Company, Lancaster, Pennsylvania, pp 19–22Google Scholar
  16. Fernandez FJ, Sanchez-Arias V, Rodriguez L, Villasenor J (2010) Feasibility of composting combinations of sewage sludge, olive mill waste and winery waste in a rotary drum reactor. Waste Manag 30:1948–1954. doi: 10.1016/j.wasman.2010.04.007 CrossRefGoogle Scholar
  17. Ghosh PG, Sawant NA, Patil SN, Aglave BA (2010) Microbial biodegradation of organophosphate pesticides. Int J Biochem Biotechnol 6:871–876. doi: 10.1111/j.1574-6976.2006.00018.x Google Scholar
  18. Haug RT (1993) The Practical Handbook of Composting Engineering, Chapter 9. Lewis Publishers, Boca Raton, FL, pp 326–327Google Scholar
  19. Herner Ž, Bažok R, Briški F (2014) Biodegradation of imidacloprid in an open compost pile. J Food Agric Environ 12:198–202Google Scholar
  20. Hussaini SZ, Shaker M, Iqbal MA (2013) Isolation of bacterial for degradation of selected pesticides. Adv Biores 4:82–85Google Scholar
  21. Inglezakis VJ, Poulopouls SG (2006) Adsorption, ion exchange and catalysis design of operations and environmental applications, 1-595. Elsevier, The NetherlandsGoogle Scholar
  22. Kolthoff IM, Sandel EB (1951) Inorganic quantitative analysis. Školska Knjiga, Zagreb, pp 347–352 (in Croatian) Google Scholar
  23. Kopčić N, Vuković Domanac M, Đaković Z, Briški F (2013) Composting of tobacco dust in different types of reactors. Chem Biochem Eng Q 27:57–64Google Scholar
  24. Kučić D, Kopčić N, Briški F (2013) Zeolite and potting soil sorption of CO2 and NH3 evolved during co-composting of grape and tobacco waste. Chem Pap 67:1172–1180. doi: 10.2478/s11696-013-0322-z Google Scholar
  25. Kupper T, Bucheli TD, Brandli RC, Ortelli D, Edder P (2008) Dissipation of pesticides during composting and anaerobic digestion of source-separated organic waste at full-scale plants. Bioresour Technol 99:7988–7994. doi: 10.1016/j.biortech.2008.03.052 CrossRefGoogle Scholar
  26. Manderson GJ (2011) Composting agricultural and industrial wastes. Biotechnology 5:1–10Google Scholar
  27. Mostafalou S, Abdollahi M (2013) Pesticides and human chronic diseases: evidences, mechanisms, and perspectives. Toxicol Appl Pharmacol 268:157–177. doi: 10.1016/j.taap.2013.01.025 CrossRefGoogle Scholar
  28. Nauen R, Hungenberg H, Tollo B, Tietjen K, Elbert A (1998) Antifeedant effect, biological efficacy and high affinity binding of imidacloprid to acetylcholine receptors in Myzus persicae and Myzus nicotianae. Pest Manag Sci 53:133–140. doi: 10.1002/(SICI)1096-9063(199806)53:2<133:AID-PS756>3.0.CO;2-D CrossRefGoogle Scholar
  29. Pandey SP, Mohanty B (2015) The neonicotinoid pesticide imidacloprid and the dithiocarbamate fungicide mancozeb disrupt the pituitary–thyroid axis of a wildlife bird. Chemosphere 122:227–234. doi: 10.1016/j.chemosphere.2014.11.061 CrossRefGoogle Scholar
  30. Pandey G, Dorrian SJ, Russell RJ, Oakeshott JG (2009) Biotransformation of the neonicotinoids imidacloprid and thiamethoxam by Pseudomonas sp. 1G. Biochem Biophys Res Commun 380:710–714. doi: 10.1016/j.bbrc.2009.01.156 CrossRefGoogle Scholar
  31. Phugare SS, Kalyani DC, Gaikwad YB, Jadhwad JP (2013) Microbial degradation of imidacloprid and toxicological analysis of its biodegradation metabolites in silkworm (Bombyx mori). Chem Eng J 230:27–35. doi: 10.1016/j.cej.2013.06.042 CrossRefGoogle Scholar
  32. Placke FJ, Weber E (1993) Method of determining imidacloprid residues in plant materials. Pflanzenschutz Nachrichten Bayer 46:109–182Google Scholar
  33. Prescott LM, Harley JP, Klein DA (1996) Microbiology, 3rd edn. WCB Publishers, ChichesterGoogle Scholar
  34. Rama Krishna K, Phillip L (2009) Biodegradation of mixed pesticides by mixed pesticide enriched cultures. J Environ Sci Health Part B 44:18–30. doi: 10.1080/03601230802519520 CrossRefGoogle Scholar
  35. Sabourmoghaddam N, Zakaria MP, Omar D (2015) Evidence for the microbial degradation of imidacloprid in soils of Cameron Highlands. J Saudi Soc Agric Sci 14:182–188. doi: 10.1016/j.jssas.2014.03.002 Google Scholar
  36. SEC (2008) Comission, European. Green Paper On the Management of bio-waste in the European Union, p. 2936Google Scholar
  37. Sharma S, Singh B, Gupta VK (2014a) Assessment of imidacloprid degradation by soil-isolated Bacillus alkalinitrilicus (A). Environ Monit Assess 186:7183–7193. doi: 10.1007/s10661-014-3919-y CrossRefGoogle Scholar
  38. Sharma S, Singh B, Gupta VK (2014b) Biodegradation of imidacloprid by consortium of two soil isolated Bacillus sp. (B). Bull Environ Contam Toxicol 93:637–642. doi: 10.1007/s00128-014-1386-3 CrossRefGoogle Scholar
  39. Verma JP, Jaiswal DK, Sagar R (2014) Pesticide relevance and their microbial degradation: a-state-of-art. Environ Sci Biotechnol 13:429–466. doi: 10.1007/s11157-014-9341-7 CrossRefGoogle Scholar
  40. Yadav SK (2010) Pesticide applications-threat to ecosystems. J Human Ecol 32:37–45. doi:10.1.1.469.2128Google Scholar
  41. Zeng G, Yu Z, Chen Y, Zhang J, Li H, Yu M, Zhao M (2011) Response of compost maturity and microbial community composition to pentachlorophenol (PCP)-contaminated soil during composting. Bioresour Technol 102:5905–5911. doi: 10.1016/j.biortech.2011.02.088 CrossRefGoogle Scholar
  42. Zeng Y, De Guardia A, Ziebal C, De Macedo FJ, Dabert P (2012) Nitrification and microbiological evolution during aerobic treatment of municipal solid wastes. Bioresour Technol 110:144–152. doi: 10.1016/j.biortech.2012.01.135 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  1. 1.Ministry of AgricultureZagrebCroatia
  2. 2.Faculty of Chemical Engineering and TechnologyUniversity of ZagrebZagrebCroatia

Personalised recommendations