Spheroid cultivation of HT-29 carcinoma cell line in liquid marbles


The ability to simulate the 3D structure of a human body is essential to increase the efficiency of drug development. In vivo conditions are significantly different in comparison to in vitro conditions. A standardly used cell monolayer on tissue culture plastic (2D cell culture) is not sufficient to simulate the transfer phenomena occurring in living organisms, therefore, cell growth in a 3D space is desired. Drug absorption, distribution, metabolism, excretion and toxicity could be tested on 3D cell aggregates called spheroids, decrease the use of animal models and accelerate the drug development. In this work, the formation of spheroids from HT-29 human colorectal adenocarcinoma cells was successfully achieved by means of the so-called liquid marbles, which are liquid droplets encapsulated by a hydrophobic powder. During the cultivation in the medium inside the liquid marbles, cells spontaneously formed spherical agglomerates (spheroids) without the need of any supporting scaffold. The study focused on the influence of different parameters—namely liquid marble volume, seeding cell density and time of cultivation—on the final yield and quality of spheroids. This work has shown that using liquid marbles as microbioreactors is a suitable method for the cultivation of HT-29 cells in the form of spheroids.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. Alvarez-Pérez J, Ballesteros P, Cerdán S (2005) Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators. MAGMA 18(6):293–301. doi:10.1007/s10334-005-0013-z

    Article  Google Scholar 

  2. Arbatan T, Al-Abboodi A, Sarvi F, Chan PPY, Shen W (2012a) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469. doi:10.1002/adhm.201200050

    CAS  Article  Google Scholar 

  3. Arbatan T, Li L, Tian J, Shen W (2012b) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83. doi:10.1002/adhm.201100016

    CAS  Article  Google Scholar 

  4. Aussillous P, Quere D (2001) Liquid marbles. Nature 411(6840):924–927

    CAS  Article  Google Scholar 

  5. Aussillous P, Quéré D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999. doi:10.1098/rspa.2005.1581

    CAS  Article  Google Scholar 

  6. Campbell A, Wicha MS, Long M (1985) Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. J Clin Investig 75(6):2085–2090. doi:10.1172/JCI111928

    CAS  Article  Google Scholar 

  7. Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A (2007) Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 28(36):5487–5497. doi:10.1016/j.biomaterials.2007.08.033

    CAS  Article  Google Scholar 

  8. DiPersio CM, Jackson DA, Zaret KS (1991) The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol 11(9):4405–4414. doi:10.1128/MCB.11.9.4405

    CAS  Article  Google Scholar 

  9. Eshtiaghi N, Hapgood KP (2012) A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders. Powder Technol 223:65–76. doi:10.1016/j.powtec.2011.05.007

    CAS  Article  Google Scholar 

  10. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115. doi:10.1016/j.tibtech.2012.12.003

    CAS  Article  Google Scholar 

  11. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi:10.1002/ijc.29210

    CAS  Article  Google Scholar 

  12. Harley BAC, Kim H, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ (2008) Microstructure of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J 95(8):4013–4024. doi:10.1529/biophysj.107.122598

    CAS  Article  Google Scholar 

  13. Ledda S, Idda A, Kelly J, Ariu F, Bogliolo L, Bebbere D (2016) A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J Assist Reprod Genet. doi:10.1007/s10815-016-0666-8

    Google Scholar 

  14. McDonald PC, Winum J-Y, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3(1):84–97. doi:10.18632/oncotarget.422

    Article  Google Scholar 

  15. Pastorekova S, Parkkila S, Parkilla AK, Opatovsky R, Zelnik V, Saarnio J, Pastorek J (1997) Gastroenterology 112(2):398–408. doi:10.1053/gast.1997.v112.pm9024293

    CAS  Article  Google Scholar 

  16. Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc Lond B 269(1497):1211–1215. doi:10.1098/rspb.2002.1999

    Article  Google Scholar 

  17. Robertson N, Potter C, Harris AL (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 64(17):6160–6165. doi:10.1158/0008-5472.CAN-03-2224

    CAS  Article  Google Scholar 

  18. Sarvi F, Arbatan T, Chan PPY, Shen W (2013) A novel technique for the formation of embryoid bodies inside liquid marbles. R Soc Chem Adv 3(34):14501–14508. doi:10.1039/C3RA40364E

    CAS  Google Scholar 

  19. Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, Shen W, Chan PPY (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1):77–86. doi:10.1002/adhm.201400138

    CAS  Article  Google Scholar 

  20. Tian J, Arbatan T, Li X, Shen W (2010) Liquid marble for gas sensing. Chem Commun 46(26):4734–4736. doi:10.1039/C001317J

    CAS  Article  Google Scholar 

  21. Vadivelu RK, Ooi CH, Yao R-Q, Tello Velasquez J, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Nguyen N-T, St John JA (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083. doi:10.1038/srep15083

    CAS  Article  Google Scholar 

  22. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Jamney PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041

    Article  Google Scholar 

  23. Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82(11):1808–1813. doi:10.1054/bjoc.2000.1111

    CAS  Article  Google Scholar 

Download references


Financial support from specific university research (MSMT No. 20-SVV/2016) and from AZV (16-34342A) is gratefully acknowledged.

Author information



Corresponding author

Correspondence to Jitka Čejková.

Additional information

Presented at the 43rd International Conference of Slovak Society of Chemical Engineering held in Tatranske´ Matliare on May 23–27, 2016.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Rychecký, O., Majerská, M., Král, V. et al. Spheroid cultivation of HT-29 carcinoma cell line in liquid marbles. Chem. Pap. 71, 1055–1063 (2017). https://doi.org/10.1007/s11696-016-0026-2

Download citation


  • Liquid marble
  • HT-29
  • Spheroid
  • Microbioreactor