Chemical Papers

, Volume 71, Issue 6, pp 1055–1063 | Cite as

Spheroid cultivation of HT-29 carcinoma cell line in liquid marbles

  • Ondřej Rychecký
  • Monika Majerská
  • Vlastimil Král
  • František Štěpánek
  • Jitka Čejková
Original Paper

Abstract

The ability to simulate the 3D structure of a human body is essential to increase the efficiency of drug development. In vivo conditions are significantly different in comparison to in vitro conditions. A standardly used cell monolayer on tissue culture plastic (2D cell culture) is not sufficient to simulate the transfer phenomena occurring in living organisms, therefore, cell growth in a 3D space is desired. Drug absorption, distribution, metabolism, excretion and toxicity could be tested on 3D cell aggregates called spheroids, decrease the use of animal models and accelerate the drug development. In this work, the formation of spheroids from HT-29 human colorectal adenocarcinoma cells was successfully achieved by means of the so-called liquid marbles, which are liquid droplets encapsulated by a hydrophobic powder. During the cultivation in the medium inside the liquid marbles, cells spontaneously formed spherical agglomerates (spheroids) without the need of any supporting scaffold. The study focused on the influence of different parameters—namely liquid marble volume, seeding cell density and time of cultivation—on the final yield and quality of spheroids. This work has shown that using liquid marbles as microbioreactors is a suitable method for the cultivation of HT-29 cells in the form of spheroids.

Keywords

Liquid marble HT-29 Spheroid Microbioreactor 

References

  1. Alvarez-Pérez J, Ballesteros P, Cerdán S (2005) Microscopic images of intraspheroidal pH by 1H magnetic resonance chemical shift imaging of pH sensitive indicators. MAGMA 18(6):293–301. doi:10.1007/s10334-005-0013-z CrossRefGoogle Scholar
  2. Arbatan T, Al-Abboodi A, Sarvi F, Chan PPY, Shen W (2012a) Tumor inside a pearl drop. Adv Healthc Mater 1(4):467–469. doi:10.1002/adhm.201200050 CrossRefGoogle Scholar
  3. Arbatan T, Li L, Tian J, Shen W (2012b) Liquid marbles as micro-bioreactors for rapid blood typing. Adv Healthc Mater 1(1):80–83. doi:10.1002/adhm.201100016 CrossRefGoogle Scholar
  4. Aussillous P, Quere D (2001) Liquid marbles. Nature 411(6840):924–927CrossRefGoogle Scholar
  5. Aussillous P, Quéré D (2006) Properties of liquid marbles. Proc R Soc A Math Phys Eng Sci 462(2067):973–999. doi:10.1098/rspa.2005.1581 CrossRefGoogle Scholar
  6. Campbell A, Wicha MS, Long M (1985) Extracellular matrix promotes the growth and differentiation of murine hematopoietic cells in vitro. J Clin Investig 75(6):2085–2090. doi:10.1172/JCI111928 CrossRefGoogle Scholar
  7. Curcio E, Salerno S, Barbieri G, De Bartolo L, Drioli E, Bader A (2007) Mass transfer and metabolic reactions in hepatocyte spheroids cultured in rotating wall gas-permeable membrane system. Biomaterials 28(36):5487–5497. doi:10.1016/j.biomaterials.2007.08.033 CrossRefGoogle Scholar
  8. DiPersio CM, Jackson DA, Zaret KS (1991) The extracellular matrix coordinately modulates liver transcription factors and hepatocyte morphology. Mol Cell Biol 11(9):4405–4414. doi:10.1128/MCB.11.9.4405 CrossRefGoogle Scholar
  9. Eshtiaghi N, Hapgood KP (2012) A quantitative framework for the formation of liquid marbles and hollow granules from hydrophobic powders. Powder Technol 223:65–76. doi:10.1016/j.powtec.2011.05.007 CrossRefGoogle Scholar
  10. Fennema E, Rivron N, Rouwkema J, van Blitterswijk C, de Boer J (2013) Spheroid culture as a tool for creating 3D complex tissues. Trends Biotechnol 31(2):108–115. doi:10.1016/j.tibtech.2012.12.003 CrossRefGoogle Scholar
  11. Ferlay J, Soerjomataram I, Dikshit R, Eser S, Mathers C, Rebelo M, Parkin DM, Forman D, Bray F (2015) Cancer incidence and mortality worldwide: sources, methods and major patterns in GLOBOCAN 2012. Int J Cancer 136(5):E359–E386. doi:10.1002/ijc.29210 CrossRefGoogle Scholar
  12. Harley BAC, Kim H, Zaman MH, Yannas IV, Lauffenburger DA, Gibson LJ (2008) Microstructure of three-dimensional scaffolds influences cell migration behavior via junction interactions. Biophys J 95(8):4013–4024. doi:10.1529/biophysj.107.122598 CrossRefGoogle Scholar
  13. Ledda S, Idda A, Kelly J, Ariu F, Bogliolo L, Bebbere D (2016) A novel technique for in vitro maturation of sheep oocytes in a liquid marble microbioreactor. J Assist Reprod Genet. doi:10.1007/s10815-016-0666-8 Google Scholar
  14. McDonald PC, Winum J-Y, Supuran CT, Dedhar S (2012) Recent developments in targeting carbonic anhydrase IX for cancer therapeutics. Oncotarget 3(1):84–97. doi:10.18632/oncotarget.422 CrossRefGoogle Scholar
  15. Pastorekova S, Parkkila S, Parkilla AK, Opatovsky R, Zelnik V, Saarnio J, Pastorek J (1997) Gastroenterology 112(2):398–408. doi:10.1053/gast.1997.v112.pm9024293 CrossRefGoogle Scholar
  16. Pike N, Richard D, Foster W, Mahadevan L (2002) How aphids lose their marbles. Proc R Soc Lond B 269(1497):1211–1215. doi:10.1098/rspb.2002.1999 CrossRefGoogle Scholar
  17. Robertson N, Potter C, Harris AL (2004) Role of carbonic anhydrase IX in human tumor cell growth, survival, and invasion. Cancer Res 64(17):6160–6165. doi:10.1158/0008-5472.CAN-03-2224 CrossRefGoogle Scholar
  18. Sarvi F, Arbatan T, Chan PPY, Shen W (2013) A novel technique for the formation of embryoid bodies inside liquid marbles. R Soc Chem Adv 3(34):14501–14508. doi:10.1039/C3RA40364E Google Scholar
  19. Sarvi F, Jain K, Arbatan T, Verma PJ, Hourigan K, Thompson MC, Shen W, Chan PPY (2015) Cardiogenesis of embryonic stem cells with liquid marble micro-bioreactor. Adv Healthc Mater 4(1):77–86. doi:10.1002/adhm.201400138 CrossRefGoogle Scholar
  20. Tian J, Arbatan T, Li X, Shen W (2010) Liquid marble for gas sensing. Chem Commun 46(26):4734–4736. doi:10.1039/C001317J CrossRefGoogle Scholar
  21. Vadivelu RK, Ooi CH, Yao R-Q, Tello Velasquez J, Pastrana E, Diaz-Nido J, Lim F, Ekberg JAK, Nguyen N-T, St John JA (2015) Generation of three-dimensional multiple spheroid model of olfactory ensheathing cells using floating liquid marbles. Sci Rep 5:15083. doi:10.1038/srep15083 CrossRefGoogle Scholar
  22. Yeung T, Georges PC, Flanagan LA, Marg B, Ortiz M, Funaki M, Zahir N, Ming W, Weaver V, Jamney PA (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34. doi:10.1002/cm.20041 CrossRefGoogle Scholar
  23. Zavada J, Zavadova Z, Pastorek J, Biesova Z, Jezek J, Velek J (2000) Human tumour-associated cell adhesion protein MN/CA IX: identification of M75 epitope and of the region mediating cell adhesion. Br J Cancer 82(11):1808–1813. doi:10.1054/bjoc.2000.1111 CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Ondřej Rychecký
    • 1
  • Monika Majerská
    • 1
  • Vlastimil Král
    • 1
    • 2
  • František Štěpánek
    • 1
  • Jitka Čejková
    • 1
  1. 1.Department of Chemical EngineeringUniversity of Chemistry and Technology PraguePragueCzech Republic
  2. 2.Laboratory of Structural BiologyInstitute of Molecular Genetics of the ASCR, v. v. i.PragueCzech Republic

Personalised recommendations