Chemical Papers

, Volume 71, Issue 6, pp 1031–1035 | Cite as

Preparation of manganese oxide nanoparticles by thermal decomposition of nanostructured manganese carbonate

  • Jan PincEmail author
  • Ondřej Jankovský
  • Vilém Bartůněk
Original Paper


MnO and Mn2O3 nanoparticles were prepared in air and argon atmosphere by thermal decomposition of nanocrystalline manganese carbonate synthesized by reaction of manganese(II) nitrate with glycerol. Samples were characterized using transmission electron microscopy, simultaneous thermal analysis and X-ray diffraction analysis. Average sizes of prepared nanoparticles were calculated from XRD patterns using Scherrer equation. Also, the conditions for decomposition of manganese carbonate were optimized to obtain optimal nanoparticle sizes. Due to suitable sizes of prepared nanoparticles and the initial material, this method can be used in a wide range of industrial applications.


Nanoparticles Manganese oxides Thermal decomposition Manganese carbonate 



This work was supported by Czech Science Foundation (No. 15-02843S).


  1. Cui X, Liu G, Lin Y (2005) Amperometric biosensors based on carbon paste electrodes modified with nanostructured mixed-valence manganese oxides and glucose oxidase. Nanomed Nanotechnol Biol Med 1(2):130–135. doi: 10.1016/j.nano.2005.03.005 CrossRefGoogle Scholar
  2. Deng Q-F, Ren T-Z, Yuan Z-Y (2013) Mesoporous manganese oxide nanoparticles for the catalytic total oxidation of toluene. React Kinet Mech Catal 108(2):507–518. doi: 10.1007/s11144-012-0528-z CrossRefGoogle Scholar
  3. Ghosh M, Biswas K, Sundaresan A, Rao CNR (2006) MnO and NiO nanoparticles: synthesis and magnetic properties. J Mater Chem 16(1):106–111. doi: 10.1039/b511920k CrossRefGoogle Scholar
  4. Gilad AA, Walczak P, McMahon MT, Na HB, Lee JH, An K, Hyeon T, van Zijl P, Bulte JW (2008) MR tracking of transplanted cells with “positive contrast” using manganese oxide nanoparticles. Magn Reson Med 60(1):1–7. doi: 10.1002/mrm.21622 CrossRefGoogle Scholar
  5. Jankovský O, Sedmidubský D, Šimek P, Sofer Z, Ulbrich P, Bartůněk V (2015) Synthesis of MnO, Mn2O3 and Mn3O4 nanocrystal clusters by thermal decomposition of manganese glycerolate. Ceram Int 41(1):595–601. doi: 10.1016/j.ceramint.2014.08.108 CrossRefGoogle Scholar
  6. Kim A, Shin D, Kim M, Yoon C, Song H, Park KH (2014) Park KH (2014) Facile synthesis of multipodal MnO nanocrystals and their catalytic performance. J Inorg Chem 8:1279–1283. doi: 10.1002/ejic.201400070 Google Scholar
  7. Lima FH, Calegaro ML, Ticianelli EA (2007) Electrocatalytic activity of manganese oxides prepared by thermal decomposition for oxygen reduction. Electrochim Acta 52(11):3732–3738. doi: 10.1016/j.electacta.2006.10.047 CrossRefGoogle Scholar
  8. Ling L, Hui L, Hongxiao Y, Jingjing W, Yanzhao Y (2011) The size-controlled synthesis of uniform Mn2O3 octahedra assembled from nanoparticles and their catalytic properties. Nanotechnol 22(1):015603CrossRefGoogle Scholar
  9. Liu SW, Qin X (2015) Manganese Oxides/Graphene Composite as Cathode Catalyst for the Oxygen Reduction Reaction in Alkaline Solution. Fuller Nanotub Carbon Nanostruct 23(9):824–830. doi: 10.1080/1536383X.2015.1009533 CrossRefGoogle Scholar
  10. Manigandan R, Suresh R, Giribabu K, Vijayalakshmi L, Stephen A, Narayanan V (2014) Synthesis, characterization, optical and sensing property of manganese oxide nanoparticles. Optoelectronic materials and thin films. AIP Conf Proc 1576:125–127CrossRefGoogle Scholar
  11. Nassar MY, Ahmed IS (2011) Hydrothermal synthesis of cobalt carbonates using different counter ions: An efficient precursor to nano-sized cobalt oxide (Co3O4). Polyhedron 30(15):2431–2437. doi: 10.1016/j.poly.2011.05.039 CrossRefGoogle Scholar
  12. Nassar MY, Khatab M (2016) Cobalt ferrite nanoparticles via a template-free hydrothermal route as an efficient nano-adsorbent for potential textile dye removal. RSC Adv 6(83):79688–79705. doi: 10.1039/c6ra12852a CrossRefGoogle Scholar
  13. Nassar MY, Ahmed IS, Mohamed TY, Khatab M (2016a) A controlled, template-free, and hydrothermal synthesis route to sphere-like alpha-Fe2O3 nanostructures for textile dye removal. RSC Adv 6(24):20001–20013. doi: 10.1039/c5ra26112k CrossRefGoogle Scholar
  14. Nassar MY, Amin AS, Ahmed IS, Abdallah S (2016b) Sphere-like Mn2O3 nanoparticles: Facile hydrothermal synthesis and adsorption properties. J Taiwan Inst Chem Eng 64:79–88. doi: 10.1016/j.jtice.2016.03.041 CrossRefGoogle Scholar
  15. Rosenholm JM, Korpi RM, Lammentausta E, Lehtonen S, Lehenkari P, Niemi R, Xiao W, Zhang J, Lindberg D, Gu H, Sahlgren C, Blanco Sequeiros R (2015) Novel, fast-processed crystalline and amorphous manganese oxide nanoparticles for stem cell labeling. Inorg Chem Front 2(7):640–648. doi: 10.1039/C5QI00033E CrossRefGoogle Scholar
  16. Ryu I, Kim G, Park D, Yim S (2015) Ethanedithiol-treated manganese oxide nanoparticles for rapidly responsive and transparent supercapacitors. J Power Sour 297:98–104. doi: 10.1016/j.jpowsour.2015.07.072 CrossRefGoogle Scholar
  17. Seo WS, Jo HH, Lee K, Park JT (2003) Preparation and Optical Properties of Highly Crystalline, Colloidal, and Size-Controlled Indium Oxide Nanoparticles. Adv Mater 15(10):795–797. doi: 10.1002/adma.200304568 CrossRefGoogle Scholar
  18. Spiro TG, Bargar JR, Sposito G, Tebo BM (2010) Bacteriogenic manganese oxides. Acc Chem Res 43(1):2–9. doi: 10.1021/ar800232a CrossRefGoogle Scholar

Copyright information

© Institute of Chemistry, Slovak Academy of Sciences 2016

Authors and Affiliations

  • Jan Pinc
    • 1
    • 2
    Email author
  • Ondřej Jankovský
    • 1
  • Vilém Bartůněk
    • 1
  1. 1.Department of Inorganic Chemistry, Faculty of Chemical TechnologyUniversity of Chemistry and Technology Prague 6Czech Republic
  2. 2.Department of Metallic Materials and Corrosion Engineering, Faculty of Chemical TechnologyUniversity of Chemistry and Technology, PraguePrague 6Czech Republic

Personalised recommendations