Skip to main content


Log in

Kinetic and thermodynamic modeling of Portland cement hydration at low temperatures

  • Original Paper
  • Published:
Chemical Papers Aims and scope Submit manuscript


Portland cement have to hydrate in cold climates in some particular conditions. Therefore, a better understanding of cement hydration under low temperatures would benefit the cement-based composites application. In this study, Portland cement was, therefore, kinetically and thermodynamically simulated based on a simple kinetics model and minimization of Gibbs free energy. The results of an evaluation indicate that Portland cement hydration impact factors include the water–cement ratio (w/c), temperature, and specific surface area, with the latter being an especially remarkable factor. Therefore, increasing the specific surface area to an appropriate level may be a solution to speed the delayed hydration due to low temperatures. Meanwhile, the w/c ratio is believed to be controlled under cold climates with consideration of durability. The thermodynamic calculation results suggest that low-temperature influences can be divided into three levels: irrevocable effects (<0 °C), recoverable effects (0–10 °C), and insignificant effects (10–20 °C). Portland cement was additionally measured via X-ray diffraction, thermal gravity analysis, and low-temperature nitrogen adsorption test in a laboratory and comparisons were drawn that validate the simulation result.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others


  • ACI Committee 306 (2010a) ACI 306.1-90, Standard Specification for Cold Weather Concreting, (Reapproved 2002) (ed.) American Concrete Institute, Farmington Hills

  • ACI Committee 306 (2010b) ACI 306R-10, Guide to Cold Weather Concreting. American Concrete Institute, Farmington Hills

  • ASTM (2014) C305-14, Standard Practice for Mechanical Mixing of Hydraulic-Cement Pastes and Mortars of Plastic Consistency. ASTM International West Conshohocken, Philadelphia

  • Azad VJ, Li C, Verba C, Ideker JH, Isgor OB (2016) A COMSOL-GEMS interface for modeling coupled reactive-transport geochemical processes. Comput Geosci. doi:10.1016/j.cageo.2016.04.002

    Google Scholar 

  • Balonis M, Lothenbach B, Le Saout G, Glasser FP (2010) Impact of chloride on the mineralogy of hydrated Portland cement systems. Cem Concr Res 40:1009–1022. doi:10.1016/j.cemconres.2010.03.002

    Article  CAS  Google Scholar 

  • Beaudoin JJ, Gu P, Marchand J, Tamtsia B, Myers RE, Liu Z (1998) Solvent replacement studies of hydrated Portland cement systems: the role of calcium hydroxide. Adv Cem Based Mater 8:56–65. doi:10.1016/S1065-7355(98)00008-X

    Article  CAS  Google Scholar 

  • Bentz DP (2000) CEMHYD3D: A three-dimensional cement hydration and microstructure development modelling package. Version 2.0. Natl Inst Stand Technol Interag Rep, p 7232

  • Brunauer S, Emmett PH, Teller E (1938) Adsorption of gases in multimolecular layers. J Am Chem Soc 60:309–319. doi:10.1021/ja01269a023

    Article  CAS  Google Scholar 

  • Camilleri J (2011) Characterization and hydration kinetics of tricalcium silicate cement for use as a dental biomaterial. Dent Mater 27:836–844. doi:10.1016/

    Article  CAS  Google Scholar 

  • Cheung J, Jeknavorian A, Roberts L, Silva D (2011) Impact of admixtures on the hydration kinetics of Portland cement. Cem Concr Res 41:1289–1309. doi:10.1016/j.cemconres.2011.03.005

    Article  CAS  Google Scholar 

  • Demirboğa R, Karagöl F, Polat R, Kaygusuz MA (2014) The effects of urea on strength gaining of fresh concrete under the cold weather conditions. Constr Build Mater 64:114–120. doi:10.1016/j.conbuildmat.2014.04.008

    Article  Google Scholar 

  • Kozikowski RL, McCall WC, Suprenant BA (2014) Cold weather concreting strategies. William E Rush, Jr, p 45

    Google Scholar 

  • Kulik DA, Wagner T, Dmytrieva SV, Kosakowski G, Hingerl FF, Chudnenko KV, Berner UR (2013) GEM-Selektor geochemical modeling package: revised algorithm and GEMS3 K numerical kernel for coupled simulation codes. Comput Geosci 17:1–24. doi:10.1007/s10596-012-9310-6

    Google Scholar 

  • Lee GC, Shih TS, Chang KC (1988) Mechanical properties of concrete at low temperature. J Cold Reg Eng 2:13–24. doi:10.1061/(ASCE)0887-381X(1988)2:1(13)

    Article  Google Scholar 

  • Lin Feng, Meyer Christian (2009) Hydration kinetics modeling of Portland cement considering the effects of curing temperature and applied pressure. Cem Concr Res 39:255–265. doi:10.1016/j.cemconres.2009.01.014

    Article  CAS  Google Scholar 

  • Liu J, Li Y, Ouyang P, Yang Y (2015) Hydration of the silica fume-Portland cement binary system at lower temperature. Constr Build Mater 93:919–925. doi:10.1016/j.conbuildmat.2015.05.069

    Article  Google Scholar 

  • Lothenbach B, Winnefeld F (2006) Thermodynamic modelling of the hydration of Portland cement. Cem Concr Res 36:209–226. doi:10.1016/j.cemconres.2005.03.001

    Article  CAS  Google Scholar 

  • Lothenbach B, Matschei T, Möschner G, Glasser FP (2008) Thermodynamic modelling of the effect of temperature on the hydration and porosity of Portland cement. Cem Concr Res 38:1–18. doi:10.1016/j.cemconres.2007.08.017

    Article  CAS  Google Scholar 

  • Maslehuddin M, Page CL, Rasheeduzzafar (1997) Temperature effect on the pore solution chemistry in contaminated cements. Mag Concr Res 49:5–14. doi:10.1680/macr.1997.49.178.5

    Article  CAS  Google Scholar 

  • Nurse RW (1949) Steam curing of concrete. Mag Concr Res 1:79–88. doi:10.1680/macr.1949.1.2.79

    Article  Google Scholar 

  • Oey T, Stoian J, Li J, Vong C, Balonis M, Kumar A, Franke W, Sant G (2014) Comparison of Ca(NO3)2 and CaCl2 admixtures on reaction, setting, and strength evolutions in plain and blended cementing formulations. J Mater Civ Eng. doi:10.1061/(ASCE)MT.1943-5533.0001240

    Google Scholar 

  • Pade C, Guimaraes M (2007) The CO2 uptake of concrete in a 100 year perspective. Cem Concr Res 37:1348–1356. doi:10.1016/j.cemconres.2007.06.009

    Article  CAS  Google Scholar 

  • Parrot LJ, Killoh DC (1984) Prediction of cement hydration. In: Proceedings of the British Ceramics Society, p 41

  • Polat R (2016) The effect of antifreeze additives on fresh concrete subjected to freezing and thawing cycles. Cold Reg Sci Technol 127:10–17. doi:10.1016/j.coldregions.2016.04.008

    Article  Google Scholar 

  • Powers TC, Brownyard TL (1946) Studies of the physical properties of hardened Portland cement paste. In: ACI Journal Proceedings. ACI

  • Qiao Y, Wang H, Cai L, Zhang W, Yang B (2016) Influence of low temperature on dynamic behavior of concrete. Constr Build Mater 115:214–220. doi:10.1016/j.conbuildmat.2016.04.046

    Article  Google Scholar 

  • Saul AGA (1951) Principles underlying the steam curing of concrete at atmospheric pressure. Mag Concr Res 2:127–140. doi:10.1680/macr.1951.2.6.127

    Article  Google Scholar 

  • Thomas JJ, Biernacki JJ, Bullard JW, Bishnoi S, Dolado JS, Scherer GW, Luttge A (2011) Modeling and simulation of cement hydration kinetics and microstructure development. Cem Concr Res 41:1257–1278. doi:10.1016/j.cemconres.2010.10.004

    Article  CAS  Google Scholar 

  • Tomosawa F (1997) Development of a kinetic model for hydration of cement. In: Proceedings of the Tenth International Congress Chemistry of Cement, Gothenburg, p 5158

  • Van Breugel K (1995) Numerical simulation of hydration and microstructural development in hardening cement-based materials:(II) applications. Cem Concr Res 25:522–530. doi:10.1016/0008-8846(95)00041-A

    Article  Google Scholar 

  • Xu L, Wang P, Zhang G (2012) Formation of ettringite in Portland cement/calcium aluminate cement/calcium sulfate ternary system hydrates at lower temperatures. Constr Build Mater 31:347–352. doi:10.1016/j.conbuildmat.2011.12.078

    Article  Google Scholar 

  • Young JF, Mindess S, Darwin D (2002) Concrete. Prentice Hall

Download references


This study was financially supported by the National Key Technology R&D Program, China (2014BAG05B04), the Doctoral Postgraduate Technical Project of Chang’an University (2014G5210006). The main experiments were conducted in the Key Laboratory for Special Area Highway Engineering, Ministry of Education of China, and the Materials Analysis Center, School of Materials Science and Engineering, Chang’an University, as well as the Xi’an Mineral Resources Surveillance and Test Center, Ministry of Land and Resource of China.

Author information

Authors and Affiliations


Corresponding authors

Correspondence to Zhuangzhuang Liu or Aimin Sha.

Appendix: TGA/DSC data of hydrated cement pastes

Appendix: TGA/DSC data of hydrated cement pastes

See Fig. 9 in “Appendix”.

Fig. 9
figure 9

TGA/DSC data of hydrated cement pastes under −5 to 20 °C: a TGA; b DTG; c DSC

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Sha, A., Hu, L. et al. Kinetic and thermodynamic modeling of Portland cement hydration at low temperatures. Chem. Pap. 71, 741–751 (2017).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: