Skip to main content

Surgery for Obesity and Weight-Related Diseases Changes the Inflammatory Profile in Women with Severe Obesity: a Randomized Controlled Clinical Trial

Abstract

Introduction/Purpose

Obesity increases significantly every year worldwide. Since 1980, the prevalence of individuals with obesity has practically doubled. Obesity plays an important role in the pathophysiology of diseases that arise from a complex interaction of nutritional, genetic, and metabolic factors, characterizing a chronic inflammatory state. This study aimed to verify the systemic inflammatory response through the analysis of IGF-1, IL-23, and resistin levels and the lipid profile in severely obese women undergoing surgery for obesity and weight-related diseases.

Materials and Methods

This randomized controlled clinical trial includes female patients clinically diagnosed with severe obesity with an indication for bariatric surgery.

Results

In the initial evaluation, no significant difference was observed between the control (CG) and bariatric surgery (BSG) groups. The weight, BMI, systolic and diastolic blood pressures, total cholesterol, LDL, HDL, total non-HDL cholesterol, and glucose in BSG patients showed a significant change after surgery. Pre- and post-surgery levels of resistin, IGF-1, and IL-23 showed a significant difference in the BSG group, but only IL-23 was changed after 6 months in the CG.

Conclusion

The results of this study confirmed that weight loss induced by surgery for obesity and weight-related diseases improved the lipid profile and reduced the chronic inflammatory status in women with severe obesity.

Graphical abstract

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

References

  1. Smith KB, Smith MS. Obesity statistics. Prim Care. 2016;43(1):121–35.

    PubMed  Google Scholar 

  2. Obesity: preventing and managing the global epidemic. Report of a WHO consultation. World Health Organ Tech Rep Ser. 2000;894:i-xii, 1–253.

  3. WHO (World Health Organization). Obesity and overweight. Key facts. Fact sheet. 2021. Available from: https://www.who.int/news-room/fact-sheets/detail/obesity-and-overweight. Accessed in: 03 Aug. 2021.

  4. Clinical Guidelines on the Identification, Evaluation, and Treatment of Overweight and Obesity in Adults--The Evidence Report. National Institutes of Health. Obes Res. 1998;6 Suppl 2:51S-209S. Erratum in: Obes Res 1998 Nov;6(6):464.

  5. Hu FB. Obesity epidemiology. Oxford: Oxford University Press; 2008. p. 498.

    Google Scholar 

  6. Ng M, Fleming T, Robinson M, et al. Global, regional, and national prevalence of overweight and obesity in children and adults 1980–2013: a systematic analysis. Lancet. 2014;384(9945):766–81.

    PubMed  PubMed Central  Google Scholar 

  7. Mapa da Obesidade. Associação Brasileira para o Estudo da Obesidade e da Síndrome Metabólica (Abeso). São Paulo; 2020. Available from: https://abeso.org.br/. Brazilian Portuguese. Accessed 2021 Aug 03

  8. Vigitel Brazil 2019: surveillance of risk and protective factors for chronic diseases by telephone survey: estimates of frequency and sociodemographic distribution of risk and protective factors for chronic diseases in the capitals of the 26 Brazilian states and the Federal District in 2019. World Wide Web: Available from: http://bvsms.saude.gov.br/bvs/publicacoes/vigitel_brasil_2019_vigilancia_fatores_risco.pdf. Accessed 31 Aug 2021.

  9. Poirier P. Adiposity and cardiovascular disease: are we using the right definition of obesity? Eur Heart J. 2007;28(17):2047–8.

    PubMed  Google Scholar 

  10. Karczewski J, Śledzińska E, Baturo A, et al. Obesity, and inflammation. Eur Cytokine Netw. 2018;29(3):83–94.

    CAS  PubMed  Google Scholar 

  11. Wu H, Ballantyne CM. Metabolic inflammation and insulin resistance in obesity. Circ Res. 2020;126(11):1549–64.

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Chrysant SG. Pathophysiology and treatment of obesity-related hypertension. J Clin Hypertens (Greenwich). 2019;21(5):555–9.

    Google Scholar 

  13. Banerjee S, Talukdar I, Banerjee A, et al. Type II diabetes mellitus and obesity: common links, existing therapeutics and future developments. J Biosci. 2019;44(6):150.

    PubMed  Google Scholar 

  14. Russel SM, Valle V, Spagni G, et al. Physiologic mechanisms of type II diabetes mellitus remission following bariatric surgery: a meta-analysis and clinical implications. J Gastrointest Surg. 2020;24(3):728–41.

    PubMed  Google Scholar 

  15. Meurling IJ, Shea DO, Garvey JF. Obesity and sleep: a growing concern. Curr Opin Pulm Med. 2019;25(6):602–8.

    PubMed  Google Scholar 

  16. Perez EA, Oliveira LVF, Freitas WR Jr, et al. Prevalence and severity of syndrome Z in women with metabolic syndrome on waiting list for bariatric surgery: a cross-sectional study. Diabetol Metab Syndr. 2017;20(9):72.

    Google Scholar 

  17. Scotece M, Conde J, López V, et al. Adiponectin and leptin: new targets in inflammation. Basic Clin Pharmacol Toxicol. 2014;114(1):97–102.

    CAS  PubMed  Google Scholar 

  18. Moussa O, Ardissino M, Muttoni S, et al. Long-term incidence and outcomes of obesity-related peripheral vascular disease after bariatric surgery. Langenbecks Arch Surg. 2021;406(4):1029–36.

    PubMed  PubMed Central  Google Scholar 

  19. Carmona-Maurici J, Cuello E, Sánchez E, et al. Impact of bariatric surgery on subclinical atherosclerosis in patients with morbid obesity. Surg Obes Relat Dis. 2020;16(10):1419–28.

    PubMed  Google Scholar 

  20. Farias G, Netto BDM, Boritza K, et al. Impact of weight loss on inflammation state and endothelial markers among individuals with extreme obesity after gastric bypass surgery: a 2-year follow-up study. Obes Surg. 2020;30(5):1881–90.

    PubMed  Google Scholar 

  21. Carmona-Maurici J, Cuello E, Ricart-Jané D, et al. Effect of bariatric surgery on inflammation and endothelial dysfunction as processes underlying subclinical atherosclerosis in morbid obesity. Surg Obes Relat Dis. 2020;16(12):1961–70.

    PubMed  Google Scholar 

  22. Koenen M, Hill MA, Cohen P, et al. Obesity, adipose tissue and vascular dysfunction. Circ Res. 2021;128(7):951–68.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. van den Berge M, van der Beek AJ, Türkeli R, et al. Work-related physical and psychosocial risk factors cluster with obesity, smoking and physical inactivity. Int Arch Occup Environ Health. 2021;94(4):741–50.

    PubMed  PubMed Central  Google Scholar 

  24. Wang X, Sun H, Ma B, et al. Insulin-like growth factor 1 related to chronic low-grade inflammation in patients with obesity and early change of its levels after laparoscopic sleeve gastrectomy. Obes Surg. 2020;30(9):3326–32.

    PubMed  Google Scholar 

  25. Paroutoglou K, Papadavid E, Christodoulatos GS, et al. Deciphering the association between psoriasis and obesity: current evidence and treatment considerations. Curr Obes Rep. 2020;9(3):165–78.

    PubMed  Google Scholar 

  26. Liu Y, Jin J, Chen Y, et al. Integrative analyses of biomarkers and pathways for adipose tissue after bariatric surgery. Adipocyte. 2020;9(1):384–400.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Min T, Prior SL, Dunseath G, et al. Temporal effects of bariatric surgery on adipokines, inflammation and oxidative stress in subjects with impaired glucose homeostasis at 4 years of follow-up. Obes Surg. 2020;30(5):1712–8.

    PubMed  PubMed Central  Google Scholar 

  28. Chiappetta S, Schaack HM, Wölnerhannsen B, et al. The impact of obesity and metabolic surgery on chronic inflammation. Obes Surg. 2018;28(10):3028–40.

    PubMed  Google Scholar 

  29. Tripathi D, Kant S, Pandey S, et al. Resistin in metabolism, inflammation, and disease. FEBS J. 2020;287(15):3141–9.

    CAS  PubMed  Google Scholar 

  30. Biobaku F, Ghanim H, Monte SV, et al. Bariatric surgery remission of inflammation, cardiometabolic benefits, and common adverse effects. J Endocr Soc. 2020;4(9):bvaa049.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Tchang BG, Saunders KH, Igel LI. Best practices in the management of overweight and obesity. Med Clin North Am. 2021;105(1):149–74.

    PubMed  Google Scholar 

  32. American Diabetes Association. 8. Obesity Management for the treatment of type 2 diabetes: standards of medical care in diabetes-2021. Diabetes Care. 2021;44(Suppl 1):S100–10.

    Google Scholar 

  33. Karlsson J, Galavazi M, Jansson S, et al. Effects on body weight, eating behavior, and quality of life of a low-energy diet combined with behavioral group treatment of persons with class II or III obesity: a 2-year pilot study. Obes Sci Pract. 2020;7(1):4–13.

    PubMed  PubMed Central  Google Scholar 

  34. LeBlanc ES, Patnode CD, Webber EM, et al. Behavioral and pharmacotherapy weight loss interventions to prevent obesity-related morbidity and mortality in adults: updated evidence report and systematic review for the US Preventive Services Task Force. JAMA. 2018;320(11):1172–91.

    PubMed  Google Scholar 

  35. De Luca M, Angrisani L, Himpens J, et al. Indications for surgery for obesity and weight-related diseases: position statements from the international federation for the surgery of obesity and metabolic disorders (IFSO). Obes Surg. 2016;26(8):1659–96.

    PubMed  PubMed Central  Google Scholar 

  36. Dilektasli E, Demir B. Definitions and current indications for obesity and metabolic surgery. Ann Laparosc Endosc Surg. 2021;20(6):8.

    Google Scholar 

  37. Stahl JM, Malhotra S. Obesity surgery indications and contraindications. 2020 Jul 31. In: StatPearls. Treasure Island: StatPearls Publishing; 2021.

  38. Sümer A. Definition of obesity and current indications for obesity surgery. Laparosc Endosc Surg Sci. 2016;23(3):56–62.

    Google Scholar 

  39. Chan AW, Tetzlaff JM, Altman DG, et al. SPIRIT 2013 statement: defining standard protocol items for clinical trials. Ann Intern Med. 2013;158(3):200–7.

    PubMed  PubMed Central  Google Scholar 

  40. Buchwald H, Consensus Conference Panel. Consensus conference statement bariatric surgery for morbid obesity: health implications for patients, health professionals, and third-party payers. Surg Obes Relat Dis. 2005;1(3):371–81.

    PubMed  Google Scholar 

  41. Ikramuddin S, Kendrick ML, Kellogg TA, et al. Open and laparoscopic Roux-en-Y gastric bypass: our techniques. J Gastrointest Surg. 2007;11(2):217–28.

    PubMed  Google Scholar 

  42. Freitas WR Jr, Oliveira LVF, Perez EA, et al. Systemic inflammation in severe obese patients undergoing surgery for obesity and weight-related diseases. Obes Surg. 2018;28(7):1931–42.

    PubMed  PubMed Central  Google Scholar 

  43. Arismendi E, Rivas E, Agustí A, et al. The systemic inflammome of severe obesity before and after bariatric surgery. PLoS One. 2014;9(9):e107859.

    PubMed  PubMed Central  Google Scholar 

  44. Kawai T, Autieri MV, Scalia R. Adipose tissue inflammation and metabolic dysfunction in obesity. Am J Physiol Cell Physiol. 2021;320(3):C375–91.

    CAS  PubMed  Google Scholar 

  45. Tam CS, Redman LM. Adipose tissue inflammation and metabolic dysfunction: a clinical perspective. Horm Mol Biol Clin Invest. 2013;15(1):19–24.

    CAS  Google Scholar 

  46. Illán-Gómez F, Gonzálvez-Ortega M, Orea-Soler I, et al. Obesity and inflammation: change in adiponectin, C-reactive protein, tumour necrosis factor-alpha and interleukin-6 after bariatric surgery. Obes Surg. 2012;22(6):950–5.

    PubMed  Google Scholar 

  47. Chiappetta S, Jamadar P, Stier C, et al. The role of C-reactive protein after surgery for obesity and metabolic disorders. Surg Obes Relat Dis. 2020;16(1):99–108.

    PubMed  Google Scholar 

  48. de Lima-Junior JC, Virginio VWM, Moura FA, et al. Excess weight mediates changes in HDL pool that reduce cholesterol efflux capacity and increase antioxidant activity. Nutr Metab Cardiovasc Dis. 2020;30(2):254–64.

    PubMed  Google Scholar 

  49. Buchwald H, Avidor Y, Braunwald E, et al. Bariatric surgery: a systematic review and meta-analysis. JAMA. 2004;292(14):1724–37.

    CAS  PubMed  Google Scholar 

  50. Malheiros C, Freitas JRW, Saleh M, et al. Bariatric surgery decreases the inflammatory response in the 6 months post-operatory. Obes Surg. 2009;19:1013.

    Google Scholar 

  51. Goktas Z, Moustaid-Moussa N, Shen CL, et al. Effects of bariatric surgery on adipokine-induced inflammation and insulin resistance. Front Endocrinol (Lausanne). 2013;10(4):69.

    Google Scholar 

  52. Farkhondeh T, Llorens S, Pourbagher-Shahri AM, et al. An overview of the role of adipokines in cardiometabolic diseases. Molecules. 2020;25(21):5218.

    CAS  PubMed Central  Google Scholar 

  53. ParreñoCaparrós E, Illán Gómez F, Gonzálvez Ortega M, et al. Resistin in morbidly obese patients before and after gastric bypass surgery. Nutr Hosp. 2017;34(5):1333–7.

    Google Scholar 

  54. Rodríguez-López CP, González-Torres MC, Cruz-Bautista I, et al. Visceral obesity, skeletal muscle mass and resistin in metabolic syndrome development. Nutr Hosp. 2019;36(1):43–50.

    PubMed  Google Scholar 

  55. Su KZ, Li YR, Zhang D, et al. Relation of circulating resistin to insulin resistance in type 2 diabetes and obesity: a systematic review and meta-analysis. Front Physiol. 2019;19(10):1399.

    Google Scholar 

  56. Jamaluddin MS, Weakley SM, Yao Q, et al. Resistin: functional roles and therapeutic considerations for cardiovascular disease. Br J Pharmacol. 2012;165(3):622–32.

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Fontana A, Spadaro S, Copetti M, et al. Association between resistin levels and all-cause and cardiovascular mortality: a new study and a systematic review and meta-analysis. PLoS One. 2015;10(3):e0120419.

    PubMed  PubMed Central  Google Scholar 

  58. Wang YY, Hung AC, Lo S, et al. Adipocytokines visfatin and resistin in breast cancer: Clinical relevance, biological mechanisms, and therapeutic potential. Cancer Lett. 2021;1(498):229–39.

    Google Scholar 

  59. Miethe C, Zamora M, Torres L, et al. Characterizing the differential physiological effects of adipocytokines visfatin and resistin in liver cancer cells. Horm Mol Biol Clin Investig. 2019;38(2):/j/hmbci.2019.38.issue-2/hmbci-2018-0068/hmbci-2018-0068.xml.

    PubMed  Google Scholar 

  60. Miethe C, Torres L, Beristain J, et al. The role of visfatin and resistin in an in vitro model of obesity-induced invasive liver cancer. Can J Physiol Pharmacol. 2020;23:1–8.

    Google Scholar 

  61. Yang G, Fan W, Luo B, et al. Circulating resistin levels and risk of colorectal cancer: a meta-analysis. Biomed Res Int. 2016;2016:7367485.

    PubMed  PubMed Central  Google Scholar 

  62. Zhang M, Yan L, Wang GJ, et al. Resistin effects on pancreatic cancer progression and chemoresistance are mediated through its receptors CAP1 and TLR4. J Cell Physiol. 2019;234(6):9457–66.

    CAS  PubMed  Google Scholar 

  63. Qiu L, Zhang GF, Yu L, et al. Novel oncogenic and chemoresistance-inducing functions of resistin in ovarian cancer cells require miRNAs-mediated induction of epithelial-to-mesenchymal transition. Sci Rep. 2018;8(1):12522.

    PubMed  PubMed Central  Google Scholar 

  64. Gong WJ, Zheng W, Xiao L, et al. Circulating resistin levels and obesity-related cancer risk: a meta-analysis. Oncotarget. 2016;7(36):57694–704.

    PubMed  PubMed Central  Google Scholar 

  65. Edwards C, Hindle AK, Fu S, et al. Downregulation of leptin and resistin expression in blood following bariatric surgery. Surg Endosc. 2011;25(6):1962–8.

    PubMed  Google Scholar 

  66. Martinelli CE Jr, Custódio RJ, Aguiar-Oliveira MH. Fisiologia do Eixo GH-Sistema IGF. Arq Bras Endrocrinol Metab. 2008;52(5):717–25.

    Google Scholar 

  67. Juiz-Valiña P, Pena-Bello L, Cordido M, et al. Altered GH-IGF-1 axis in severe obese subjects is reversed after bariatric surgery-induced weight loss and related with low-grade chronic inflammation. J Clin Med. 2020;9(8):2614.

    PubMed Central  Google Scholar 

  68. Pellitero S, Granada ML, Martínez E, et al. IGF1 modifications after bariatric surgery in morbidly obese patients: potential implications of nutritional status according to specific surgical technique. Eur J Endocrinol. 2013;169(5):695–703.

    CAS  PubMed  Google Scholar 

  69. Pardina E, Ferrer R, Baena-Fustegueras JA, et al. The relationships between IGF-1 and CRP, NO, leptin, and adiponectin during weight loss in the morbidly obese. Obes Surg. 2010;20(5):623–32.

    PubMed  Google Scholar 

  70. Higashi Y, Gautam S, Delafontaine P, et al. IGF-1 and cardiovascular disease. Growth Horm IGF Res. 2019;45:6–16.

    CAS  PubMed  PubMed Central  Google Scholar 

  71. Obradovic M, Zafirovic S, Soskic S, et al. Effects of IGF-1 on the Cardiovascular System. Curr Pharm Des. 2019;25(35):3715–25.

    CAS  PubMed  Google Scholar 

  72. Dichtel LE, Corey KE, Misdraji J, et al. The association between igf-1 levels and the histologic severity of nonalcoholic fatty liver disease. Clin Transl Gastroenterol. 2017;8(1):e217.

    CAS  PubMed  PubMed Central  Google Scholar 

  73. Sádaba MC, Martín-Estal I, Puche JE, et al. Insulin-like growth factor 1 (IGF-1) therapy: Mitochondrial dysfunction and diseases. Biochim Biophys Acta. 2016;1862(7):1267–78.

    PubMed  Google Scholar 

  74. Olleros Santos-Ruiz M, Sádaba MC, Martín-Estal I, et al. The single IGF-1 partial deficiency is responsible for mitochondrial dysfunction and is restored by IGF-1 replacement therapy. Growth Horm IGF Res. 2017;35:21–32.

    CAS  PubMed  Google Scholar 

  75. Rasmussen MH, Juul A, Hilsted J. Effect of weight loss on free insulin-like growth factor-I in obese women with hyposomatotropism. Obesity (Silver Spring). 2007;15(4):879–86.

    CAS  Google Scholar 

  76. Weroha SJ, Haluska P. The insulin-like growth factor system in cancer. Endocrinol Metab Clin North Am. 2012;41(2):335–vi.

    CAS  PubMed  PubMed Central  Google Scholar 

  77. Sumarac-Dumanovic M, Stevanovic D, Ljubic A, et al. Increased activity of interleukin-23/interleukin-17 proinflammatory axis in obese women. Int J Obes (Lond). 2009;33(1):151–6.

    CAS  Google Scholar 

  78. Neurath MF. IL-23 in inflammatory bowel diseases and colon cancer. Cytokine Growth Factor Rev. 2019;45:1–8.

    CAS  PubMed  Google Scholar 

  79. Yan J, Smyth MJ, Teng MWL. Interleukin (IL)-12 and IL-23 and their conflicting roles in cancer. Cold Spring Harb Perspect Biol. 2018;10(7):a028530.

    PubMed  PubMed Central  Google Scholar 

  80. Chyuan IT, Lai JH. New insights into the IL-12 and IL-23: from a molecular basis to clinical application in immune-mediated inflammation and cancers. Biochem Pharmacol. 2020;175:113928.

    CAS  PubMed  Google Scholar 

  81. Ge W, Hu H, Cai W, et al. High-risk stage III colon cancer patients identified by a novel five-gene mutational signature are characterized by upregulation of IL-23A and gut bacterial translocation of the tumor microenvironment. Int J Cancer. 2020;146(7):2027–35.

    CAS  PubMed  Google Scholar 

  82. Hirano T, Hirayama D, Wagatsuma K, et al. Immunological mechanisms in inflammation-associated colon carcinogenesis. Int J Mol Sci. 2020;21(9):3062.

    CAS  PubMed Central  Google Scholar 

  83. Wu S, Rhee KJ, Albesiano E, et al. A human colonic commensal promotes colon tumorigenesis via activation of T helper type 17 T cell responses. Nat Med. 2009;15(9):1016–22.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the technical infrastructure support provided by Department of Surgery of Santa Casa Medical School (Sao Paulo, Brazil).

Funding

ARTS, EAP, and ASS receives grants of Coordenaçao de Apoio ao Pessoal de Nível Superior (CAPES/PROSUP); JPRA receive grants of Fundação de Amparo a Pesquisa (FAPEG), Goiás (GO), Brazil; LVFO receive grants Research Productivity, modality PQ1D; process no. 312731/2018–3 of Conselho Nacional de Desenvolvimento Cientifico e Tecnologico (local acronym CNPq), Brazil.

Author information

Authors and Affiliations

Authors

Contributions

Conceived and designed of the study: LVFO, ARTS, WRFJ, CAM, and GI. Acquisition, statistical analysis, or interpretation of the data: EAP, ASS, VLSA, JPRA, MCO, LVFO, ALF, MEML, MCOJ, RPV, WJSP, and ALLB. Evaluation and implementation of bariatric surgery: ARTS, WRFJ, EJI, and CAM. Follow-up of surgical patients: MMS, ARTS, WRFJ, and CAM. Checking and interpretation of the data, drafting of the manuscript, and approved the submitted version of the manuscript: all authors.

Corresponding author

Correspondence to Luis Vicente Franco Oliveira.

Ethics declarations

Ethical Approval

All procedures performed in this study involving human participants were in accordance with the ethical standards of the institutional and national research committee and with the 1964 Helsinki declaration and its later amendments. This research was approved by the Human Research Ethics 564 Committees of Nove de Julho University (UNINOVE; protocol number 565 220506/2009) and Irmandade da Santa Casa de Misericordia de Sao 566 Paulo, Brazil (protocol number 742.865/2014). This trial was registered at ClinicalTrials.gov (02409160).

Informed Consent

Informed consent was obtained from all individual participants included in this study.

Conflict of Interest

The authors declare that they have no conflicts of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

- Unfortunately, weight loss resulting from clinical treatment for obesity is hardly achieved and sustained.

- Weight loss induced by surgery for obesity and weight-related diseases improved the lipid profile.

- The chronic inflammatory profile observed in severely obese women is considerably reduced after weight loss induced by surgery for obesity and weight-related diseases.

Supplementary Information

Below is the link to the electronic supplementary material.

Supplementary file1 (PPTX 355 KB)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

de Sousa, A.R.T., Freitas Junior, W.R., Perez, E.A. et al. Surgery for Obesity and Weight-Related Diseases Changes the Inflammatory Profile in Women with Severe Obesity: a Randomized Controlled Clinical Trial. OBES SURG 31, 5224–5236 (2021). https://doi.org/10.1007/s11695-021-05702-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05702-5

Keywords

  • Severe obesity
  • Inflammation
  • Adipokines
  • Weight loss