Skip to main content
Log in

Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy

  • Original Contributions
  • Published:
Obesity Surgery Aims and scope Submit manuscript

Abstract

Background

Metabolic/bariatric surgery is a highly effective treatment for obesity and metabolic diseases. Serum glucagon, bile acids, and FGF-19 are key effectors of various metabolic processes and may play central roles in bariatric surgical outcomes. It is unclear whether these factors behave similarly after Roux-en-Y gastric bypass (RYGB) vs vertical sleeve gastrectomy (VSG).

Methods

Serum glucagon, bile acids (cholic acid [CA], chenodeoxycholic acid [CDCA], deoxycholic acid [DCA]), and FGF-19 were analyzed in samples of fasting blood collected before bariatric surgery, on postoperative days 2 and 10, and at 3- and 6-month follow-up.

Results

From September 2016 to July 2017, patients with obesity underwent RYGB or VSG; 42 patients (RYGB n = 21; VSG n = 21) were included in the analysis. In the RYGB group, glucagon, CA, and CDCA increased continuously after surgery (p = 0.0003, p = 0.0009, p = 0.0001, respectively); after an initial decrease (p = 0.04), DCA increased significantly (p = 0.0386). Serum FGF-19 was unchanged. In the VSG group, glucagon increased on day 2 (p = 0.0080), but decreased over the 6-month study course (p = 0.0025). Primary BAs (CA and CDCA) decreased immediately after surgery (p = 0.0016, p = 0.0091) and then rose (p = 0.0350, p = 0.0350); DCA followed the curve of the primary BAs until it fell off at 6 months (p = 0.0005). VSG group serum FGF-19 trended upward.

Conclusion

RYGB and VSG involve different surgical techniques and final anatomical configurations. Between postoperative day 2 and 6-month follow-up, RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.

Similar content being viewed by others

References

  1. Wadden TA, Bantle JP, Blackburn GL, Bolin P, Brancati FL, Bray GA, et al. Eight-year weight losses with an intensive lifestyle intervention: The look AHEAD study. Obesity. Hoboken: Wiley. 2014;22:5–13.

    Article  Google Scholar 

  2. Sjostrom L, Narbro K, Sjostrom D, Karason K, Larsson B, Wedel H, et al. Effects of bariatric surgery on mortality in Swedish obese subjects. N Engl J Med Waltham: Massachusetts Medical Soc. 2007;357:741–52.

    Article  Google Scholar 

  3. Pories WJ. Bariatric surgery: risks and rewards. J Clin Endocrinol Metab Washington: Endocrine Soc. 2008;93:S89–96.

    Article  CAS  Google Scholar 

  4. Schauer PR, Bhatt DL, Kirwan JP, Wolski K, Aminian A, Brethauer SA, et al. Bariatric surgery versus intensive medical therapy for diabetes-5-year outcomes. N Engl J Med Waltham: Massachusetts Medical Soc. 2017;376:641–51.

    Article  Google Scholar 

  5. Knop FK, Taylor R. Mechanism of metabolic advantages after bariatric surgery it’s all gastrointestinal factors versus it’s all food restriction. Diabetes Care Alexandria: Amer Diabetes Assoc. 2013;36:S287–91.

    Article  CAS  Google Scholar 

  6. Isbell JM, Tamboli RA, Hansen EN, Saliba J, Dunn JP, Phillips SE, et al. The importance of caloric restriction in the early improvements in insulin sensitivity after Roux-en-Y gastric bypass surgery. Diabetes Care. 2010;33:1438–42.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Kashyap SR, Daud S, Kelly KR, Gastaldelli A, Win H, Brethauer S, et al. Acute effects of gastric bypass versus gastric restrictive surgery on beta-cell function and insulinotropic hormones in severely obese patients with type 2 diabetes. Int J Obes. 2005;2010(34):462–71.

    Google Scholar 

  8. Bose M, Teixeira J, Olivan B, Bawa B, Arias S, Machineni S, et al. Weight loss and incretin responsiveness improve glucose control independently after gastric bypass surgery. J Diabetes. 2010;2:47–55.

    Article  PubMed  CAS  Google Scholar 

  9. Morínigo R, Lacy AM, Casamitjana R, Delgado S, Gomis R, Vidal J. GLP-1 and changes in glucose tolerance following gastric bypass surgery in morbidly obese subjects. Obes Surg. 2006;16:1594–601.

    Article  PubMed  Google Scholar 

  10. Morínigo R, Moizé V, Musri M, Lacy AM, Navarro S, Marín JL, et al. Glucagon-like peptide-1, peptide YY, hunger, and satiety after gastric bypass surgery in morbidly obese subjects. J Clin Endocrinol Metab. 2006;91:1735–40.

    Article  PubMed  CAS  Google Scholar 

  11. Albaugh VL, Flynn CR, Cai S, Xiao Y, Tamboli RA, Abumrad NN. Early Increases in bile acids post roux-en-y gastric bypass are driven by insulin-sensitizing, secondary bile acids. J Clin Endocrinol Metab Oxford Academic. 2015;100:E1225–33.

    Article  Google Scholar 

  12. Hofmann AF, Hagey LR. Bile acids: Chemistry, pathochemistry, biology, pathobiology, and therapeutics. Cell Mol Life Sci Basel: Springer Basel Ag. 2008;65:2461–83.

    Article  CAS  Google Scholar 

  13. Thomas C, Pellicciari R, Pruzanski M, Auwerx J, Schoonjans K. Targeting bile-acid signalling for metabolic diseases. Nat Rev Drug Discov London: Nature Publishing Group. 2008;7:678–93.

    Article  CAS  Google Scholar 

  14. Chiang JYL. Bile acid metabolism and signaling. Compr Physiol Hoboken: Wiley. 2013;3:1191–212.

    Article  Google Scholar 

  15. Staels B, Fonseca VA. Bile acids and metabolic regulation: mechanisms and clinical responses to bile acid sequestration. Diabetes Care Am Diabetes Assoc. 2009;32:S237–45.

    Article  CAS  Google Scholar 

  16. Mueller M, Thorell A, Claudel T, Jha P, Koefeler H, Lackner C, et al. Ursodeoxycholic acid exerts farnesoid X receptor-antagonistic effects on bile acid and lipid metabolism in morbid obesity. J Hepatol Amsterdam: Elsevier. 2015;62:1398–404.

    Article  CAS  Google Scholar 

  17. Pournaras DJ, Glicksman C, Vincent RP, Kuganolipava S, Alaghband-Zadeh J, Mahon D, et al. The role of bile after Roux-en-Y gastric bypass in promoting weight loss and improving glycaemic control. Endocrinology. 2012;153:3613–9.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Alexiadou K, Cuenco J, Howard J, Wewer Albrechtsen NJ, Ilesanmi I, Kamocka A, et al. Proglucagon peptide secretion profiles in type 2 diabetes before and after bariatric surgery: 1-year prospective study. BMJ Open Diabetes Res Care. 2020;8

  19. Demant M, Bagger JI, Suppli MP, Lund A, Gyldenløve M, Hansen KB, et al. Determinants of fasting hyperglucagonemia in patients with type 2 diabetes and nondiabetic control subjects. Metab Syndr Relat Disord. 2018;16:530–6.

    Article  PubMed  CAS  Google Scholar 

  20. Laferrère B, Heshka S, Wang K, Khan Y, McGinty J, Teixeira J, et al. Incretin levels and effect are markedly enhanced 1 month after Roux-en-Y gastric bypass surgery in obese patients with type 2 diabetes. Diabetes Care. 2007;30:1709–16.

    Article  PubMed  CAS  Google Scholar 

  21. Purnell JQ, Johnson GS, Wahed AS, Dalla Man C, Piccinini F, Cobelli C, et al. Prospective evaluation of insulin and incretin dynamics in obese adults with and without diabetes for 2 years after Roux-en-Y gastric bypass. Diabetologia. 2018;61:1142–54.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  22. Jacobsen SH, Olesen SC, Dirksen C, Jørgensen NB, Bojsen-Møller KN, Kielgast U, et al. Changes in gastrointestinal hormone responses, insulin sensitivity, and beta-cell function within 2 weeks after gastric bypass in non-diabetic subjects. Obes Surg. 2012;22:1084–96.

    Article  PubMed  CAS  Google Scholar 

  23. Myronovych A, Kirby M, Ryan KK, Zhang W, Jha P, Setchell KDR, et al. Vertical sleeve gastrectomy reduces hepatic steatosis while increasing serum bile acids in a weight-loss-independent manner. Obesity. Hoboken: Wiley. 2014;22:390–400.

    Article  CAS  Google Scholar 

  24. Cummings BP, Bettaieb A, Graham JL, Stanhope KL, Kowala M, Haj FG, et al. Vertical sleeve gastrectomy improves glucose and lipid metabolism and delays diabetes onset in UCD-T2DM rats. Endocrinology. 2012;153:3620–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Ding L, Sousa KM, Jin L, Dong B, Kim B-W, Ramirez R, et al. Vertical sleeve gastrectomy activates GPBAR-1/TGR5 to sustain weight loss, improve fatty liver, and remit insulin resistance in mice. Hepatol Baltim Md. 2016;64:760–73.

    Article  CAS  Google Scholar 

  26. Ryan KK, Tremaroli V, Clemmensen C, Kovatcheva-Datchary P, Myronovych A, Karns R, et al. FXR is a molecular target for the effects of vertical sleeve gastrectomy. Nature. London: Nature Publishing Group; 2014;509:183-+.

  27. Bhutta HY, Rajpal N, White W, Freudenberg JM, Liu Y, Way J, et al. Effect of Roux-en-Y gastric bypass surgery on bile acid metabolism in normal and obese diabetic rats. PloS One. 2015;10:e0122273.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  28. Spinelli V, Lalloyer F, Baud G, Osto E, Kouach M, Daoudi M, et al. Influence of Roux-en-Y gastric bypass on plasma bile acid profiles: a comparative study between rats, pigs and humans. Int J Obes. 2005;2016(40):1260–7.

    Google Scholar 

  29. Khan FH, Shaw L, Zhang W, Salazar Gonzalez RM, Mowery S, Oehrle M, et al. Fibroblast growth factor 21 correlates with weight loss after vertical sleeve gastrectomy in adolescents. Obes Silver Spring Md. 2016;24:2377–83.

    Article  CAS  Google Scholar 

  30. Jahansouz C, Xu H, Hertzel AV, Serrot FJ, Kvalheim N, Cole A, et al. Bile acids increase independently from hypocaloric restriction after bariatric surgery. Ann Surg. 2016;264:1022–8.

    Article  PubMed  Google Scholar 

  31. Escalona A, Munoz R, Irribarra V, Solari S, Allende F, Francisco MJ. Bile acids synthesis decreases after laparoscopic sleeve gastrectomy. Surg Obes Relat Dis, vol. 12. New York: Elsevier Science Inc; 2016. p. 763–9.

    Google Scholar 

  32. Belgaumkar AP, Vincent RP, Carswell KA, Hughes RD, Alaghband-Zadeh J, Mitry RR, et al. Changes in bile acid profile after laparoscopic sleeve gastrectomy are associated with improvements in metabolic profile and fatty liver disease. Obes Surg. 2016;26:1195–202.

    Article  PubMed  Google Scholar 

  33. Steinert RE, Peterli R, Keller S, Meyer-Gerspach AC, Drewe J, Peters T, et al. Bile acids and gut peptide secretion after bariatric surgery: a 1-year prospective randomized pilot trial. Obesity. 2013;21:E660–8.

    Article  PubMed  CAS  Google Scholar 

  34. Nakatani H, Kasama K, Oshiro T, Watanabe M, Hirose H, Itoh H. Serum bile acid along with plasma incretins and serum high–molecular weight adiponectin levels are increased after bariatric surgery. Metab - Clin Exp Elsevier. 2009;58:1400–7.

    Article  CAS  Google Scholar 

  35. Gerhard GS, Styer AM, Wood GC, Roesch SL, Petrick AT, Gabrielsen J, et al. A Role for Fibroblast growth factor 19 and bile acids in diabetes remission after Roux-en-Y gastric bypass. Diabetes Care Am Diabetes Assoc. 2013;36:1859–64.

    Article  CAS  Google Scholar 

  36. Jansen PLM, van Werven J, Aarts E, Berends F, Janssen I, Stoker J, et al. Alterations of hormonally active fibroblast growth factors after Roux-en-Y gastric bypass surgery. Dig Dis Basel Switz. 2011;29:48–51.

    Article  CAS  Google Scholar 

  37. Haluzíková D, Lacinová Z, Kaválková P, Drápalová J, Křížová J, Bártlová M, et al. Laparoscopic sleeve gastrectomy differentially affects serum concentrations of FGF-19 and FGF-21 in morbidly obese subjects. Obes Silver Spring Md. 2013;21:1335–42.

    Article  CAS  Google Scholar 

  38. Albaugh VL, Banan B, Ajouz H, Abumrad NN, Flynn CR. Bile acids and bariatric surgery. Mol Aspects Med Amsterdam: Elsevier. 2017;56:75–89.

    Article  CAS  Google Scholar 

  39. Ferrannini E, Camastra S, Astiarraga B, Nannipieri M, Castro-Perez J, Xie D, et al. Increased bile acid synthesis and deconjugation after biliopancreatic diversion. diabetes. Alexandria: Amer Diabetes Assoc. 2015;64:3377–85.

    CAS  Google Scholar 

  40. De Vuono S, Ricci MA, Nulli Migliola E, Monti MC, Morretta E, Boni M, et al. Serum bile acid levels before and after sleeve gastrectomy and their correlation with obesity-related comorbidities. Obes Surg. 2019;29:2517–26.

    Article  PubMed  Google Scholar 

  41. Trung VN, Yamamoto H, Furukawa A, Yamaguchi T, Murata S, Yoshimura M, et al. Enhanced intestinal motility during oral glucose tolerance test after laparoscopic sleeve gastrectomy: preliminary results using cine magnetic resonance imaging. Plos One Public Library Sci. 2013;8:e65739.

    Article  CAS  Google Scholar 

  42. Einarsson C, Hillebrant CG, Axelson M. Effects of treatment with deoxycholic acid and chenodeoxycholic acid on the hepatic synthesis of cholesterol and bile acids in healthy subjects. Hepatol Baltim Md. 2001;33:1189–93.

    Article  CAS  Google Scholar 

  43. Zhang C, Zhang J, Zhou Z. Changes in fasting bile acid profiles after Roux-en-Y gastric bypass and sleeve gastrectomy. Medicine (Baltimore). 2021;100:e23939.

    Article  CAS  Google Scholar 

  44. Holst JJ, Madsbad S, Bojsen-Møller KN, Svane MS, Jørgensen NB, Dirksen C, et al. Mechanisms in bariatric surgery: gut hormones, diabetes resolution, and weight loss. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2018;14:708–14.

    Article  Google Scholar 

  45. Yang J, Gao Z, Williams DB, Wang C, Lee S, Zhou X, et al. Effect of laparoscopic Roux-en-Y gastric bypass versus laparoscopic sleeve gastrectomy on fasting gastrointestinal and pancreatic peptide hormones: a prospective nonrandomized trial. Surg Obes Relat Dis Off J Am Soc Bariatr Surg. 2018;14:1521–9.

    Article  Google Scholar 

  46. Chiang JYL. Bile acids: regulation of synthesis. J Lipid Res. 2009;50:1955–66.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  47. Li S, Hsu DDF, Li B, Luo X, Alderson N, Qiao L, et al. Cytoplasmic tyrosine phosphatase Shp2 coordinates hepatic regulation of bile acid and FGF15/19 signaling to repress bile acid synthesis. Cell Metab. 2014;20:320–32.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

Download references

Acknowledgements

We thank TW McGlennon, McGlennon MotiMetrics, Maiden Rock, WI, USA, for statistical analysis review.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Georgi Vassilev.

Ethics declarations

Ethics Approval

All procedures of the study are ethically compliant and were approved (EK 416092015) by the Institutional Review Board of University Medicine Mannheim, Germany. The study was performed in accord with the ethical standards of the 1964 Declaration of Helsinki and its subsequent amendments.

Consent to Participate

Written informed consent was obtained from all study participants.

Conflict of Interest

The authors declare that they have no conflicts of interest or financial ties to disclose. JN Buchwald received a small grant for manuscript development.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Key Points

1. In the RYGB group: Glucagon and the primary bile acids CA and CDCA increased continuously after surgery, while the secondary bile acid DCA decreased initially and later significantly increased.

2. In the VSG group: Glucagon increased initially but later decreased. The primary bile acids CA and CDCA, as well as DCA, decreased immediately and showed no significant change thereafter.

3. RYGB and VSG resulted in divergent patterns of change in serum glucagon, bile acids, and FGF-19. The different alterations in bile acid levels following RYGB and VSG have been confirmed by a recent meta-analysis.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, C., Brecht, J., Weiß, C. et al. Serum Glucagon, Bile Acids, and FGF-19: Metabolic Behavior Patterns After Roux-en-Y Gastric Bypass and Vertical Sleeve Gastrectomy. OBES SURG 31, 4939–4946 (2021). https://doi.org/10.1007/s11695-021-05677-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11695-021-05677-3

Keywords

Navigation